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Introduction

Ergodic theory is the abstract framework for the study of measurable dynamical
systems: we take a set X equipped with a σ-algebra A and a measure µ on A .
Our basic assumption is that (X,A ) is a standard Borel space and µ is a Borel
measure. A transformation T acts on this measure space, which is a measurable,
invertible map with measurable inverse. We assume that T preserves the measure:
for all A ∈ A , µ(T−1A) = µ(A). In other words, the image measure of µ by T ,
denoted by T∗µ, is equal to µ. The quadruple X := (X,A , µ, T ) is what we call
a dynamical system. One of the goals of ergodic theory is to give a classification
of those systems. In particular, we have a “hierarchy” on dynamical systems: if
X := (X,A , µ, T ) and Y := (Y,C , ν, S) are dynamical systems, we say that
Y is a factor of X if there is a map π : X → Y that preserves the measure, i.e.
π∗µ = ν, and such that

π ◦ T = S ◦ π, µ-almost surely.

In that case we say that π is a factor map. If, in addition, π is bijective outside of
sets of measure 0, we say that π is an isomorphism. We can also view this factor
map through the σ-algebra B := π−1C ⊂ A that it generates. One can note that
the image of B under T , i.e. the σ-algebra T−1B := {T−1B ; B ∈ B}, is equal
to B. Such a σ-algebra is called a factor σ-algebra.

A well known result from ergodic theory tells us that, for any other system
Z := (Z,D , ρ, R) and any factor map π̃ : X → Z such that π̃−1D = B mod µ,
there exists an isomorphism ϕ : Z → Y such that π = ϕ ◦ π̃ (see [?, Chapter 2,
Section 2] or [?, Section 2.1]). This means that, by knowing B, we can describe
Y up to isomorphism.

Moreover, while the internal structure of B informs us on the behavior of
the factor system Y, obtaining a complete understanding of B inside of X (and
consequently of π) requires examining how B is embedded within A . Here, it
is helpful to change our perspective: instead of considering B as a factor of A ,
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we view A as an extension of B. For convenience, we usually say that the pair
(A ,B) is an extension, which we denote by A → B, or even by X

π−→ Y if we
want to specify the factor map. The purpose in studying A → B is to determine
the relative structure of A over B. Such extensions constitute an important area
of study in ergodic theory and have been considered in many different contexts
(see [?], [?], [?], [?] or [?]). They are also the focus of the first two chapters of
my thesis.

An important concept that emerges from our work on extensions is the notion
of confined extensions, which relies on the theory of joinings, initiated by Fursten-
berg [?]. On X, an extension A → B is confined if, for any joining of X with
another system Z := (Z,D , ρ, R) such that D is independent of B, D is also
independent of A , and the said joining is simply the product joining.

Confined extensions and non-standard dynamical filtrations

As the main part of Chapter ??, we introduce confined extensions and study their
basic properties. We give examples of such extensions appearing in diverse con-
texts (compact extensions, T, T−1 transformations, flow extensions). We also find
many ergodic properties of dynamical systems that can be lifted through con-
fined extensions, i.e. properties P such that, if P is true on B and the extension
A → B is confined, then P is true on A . Actually, it turns out that confinement
is close to the notion of stability introduced by Robinson in [?] specifically to get
such lifting results. But confinement is easier to manipulate, applicable without
any ergodicity assumption and invariant under isomorphism.

In the rest of Chapter ??, we question whether there is a general structure that
can describe, for an extension A → B, how we rebuild A , starting from B.
Initially, our work is guided by the “static case”, i.e. the study of a probability
space (X,A , µ), where (X,A ) is a standard Borel space and µ a Borel measure,
with a sub-σ-algebra B ⊂ A . In that setup, it is known (see [?, Proposition
3.25]) that, up to embedding A in a larger σ-algebra Ã , there is a σ-algebra C
independent of B such that

A ⊂ B ∨ C mod µ. (1)

Such a σ-algebra C is called a super-innovation. We want to know if an equiva-
lent result could be true in our dynamical case. Namely, we wonder whether, for
any extension A → B on a system X, up to embedding X in a larger system
X̃ := (X̃, Ã , µ̃, T̃ ), there exists a factor σ-algebra C on X̃ independent from B
for which (??) would be true. The key difference here is that C is assumed to
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be a factor σ-algebra. However, it follows relatively easily from the definitions
that a confined extension cannot have such a “dynamical” super-innovation (see
Proposition ??). This is actually our initial motivation for introducing confined
extensions.

Then, we keep wondering if more general structures could describe extensions
in the dynamical case. We take inspiration from the theory of dynamical filtra-
tions introduced in [?], [?]. A dynamical filtration on a system X is an increasing
sequence (Fn)n≤0 of factor σ-algebras. In [?], [?], Lanthier and de la Rue iden-
tified a significant class of dynamical filtration: standard dynamical filtrations.
Although that notion was mainly introduced as a way to characterize the asymp-
totic behavior of dynamical filtrations, we are interested in understanding the lo-
cal structures it imposes on a finite number of factors. Specifically, we view an
extension A → B as a filtration with only two steps, and copy the definition of
standard filtrations to get the definition of a standard extension (see Definition ??).
For an extension A → B, being standard is a weaker property than admitting a
super-innovation, as it only requires that A → B can be immersed into an exten-
sion that admits a super-innovation. Then, our goal is to figure out if there exist
non-standard extensions: first, we note that there are standard confined extensions
(see Lemma ?? and Theorem ??), so this question requires additional work. At
that point, we turn our attention towards T, T−1 transformations, which were part
of our examples of confined extensions. Ultimately, we manage to show, with ad-
ditional assumptions on T , that the T, T−1 transformation gives us a non-standard
extension.

Our work on extensions highlights the complexity of the possible structures
than can arise, making, in turn, the study of dynamical filtrations more difficult.
Indeed, in the static case (i.e. when T = Id), the study of filtrations of the form
(Fn)n≤0 is mainly an asymptotic problem. However, in general, for a dynamical
filtration (Fn)n≤0, it is necessary to understand both the asymptotic behavior of
the filtration and the local structure of each extension Fn+1 → Fn. In particular,
from the existence of non-standard extensions, we deduce a negative answer to
a question left open in [?] regarding the characterization of standard dynamical
filtrations (see Proposition ??).

Throughout Chapter ??, we define confined extensions, give interesting prop-
erties and show that they are a useful tool in the classification of extensions.
Therefore, we want to see in which contexts that behavior can appear, and we
start doing so in Section ??, by using extensions that are well known in the litera-
ture. Next, we want to develop more intricate examples, to better understand the
type of structures that can yield confinement.
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Confined Poisson extensions

The work from Chapter ?? concerns a new kind of confined extensions, built using
Poisson suspensions.

Poisson suspensions bridge two areas of ergodic theory: “classical” ergodic
theory, where the invariant measure µ is a probability measure (i.e. µ(X) = 1),
and infinite ergodic theory, where µ is only σ-finite, i.e. there are sets (Xn)n≥0 of
finite measure such that X =

⋃
n≥0Xn, but µ(X) =∞.

This is done using Poisson point processes: take a σ-finite measure space
(X,A , µ) and consider the setX∗ of counting measures onX of the form

∑
i∈N δxi ,

with (xi)i∈N ∈ XN. The measurable sets on X∗ are generated by the maps
ω ∈ X∗ 7→ ω(A) ∈ N, with A ∈ A . This emphasizes that we do not keep
track of the position of each individual point, but simply look at how they are
distributed on X . Finally, the Poisson point process on (X,A , µ) is given by
the probability measure µ∗ characterized by the following: for any disjoint sets
A1, ..., An ∈ A , the random variables ω(A1), ..., ω(An) are independent Poisson
random variables of respective parameter µ(Ai), for i ∈ J1, nK.

If we now take an infinite measure dynamical system X := (X,A , µ, T ), we
have the corresponding probability space (X∗,A ∗, µ∗) and T induces a natural
transformation: T∗ : ω 7→ T∗ω = ω(T−1(·)). This yields the dynamical system
X∗ := (X∗,A ∗, µ∗, T∗), and it is the Poisson suspension over X. So we have an
infinite measure system, X, and a probability measure system, X∗, whose proper-
ties are intertwined.

Now, if we have a factor map π : Z → X between two infinite measure
systems, it yields a factor map

π∗ : Z∗ −→ X∗

ω 7−→ π∗ω = ω(π−1(·)) ,

between the associated Poisson suspensions. The corresponding extension Z∗
π∗−→

X∗ is a Poisson extension. We are interested in a particular type of Poisson exten-
sions: the case where Z is a compact extension of X. Specifically, we take a com-
pact group G with Haar measure mG, and a measurable map ϕ : X → G, which
is called a cocycle. Then, on the measure space (X×G,A ⊗B(G), µ⊗mG), we
define the transformation

Tϕ : X ×G −→ X ×G
(x, g) 7−→ (Tx, g · ϕ(x))

.
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The system Z := (X ×G,A ⊗B(G), µ⊗mG, Tϕ) is a compact extension of X.
The Poisson extensions we study are those of the form

((X ×G)∗, (µ⊗mG)∗, (Tϕ)∗)
π∗−→ (X∗, µ∗, T∗).

We are able to get two results. First, we look at the case where ϕ acts as the
identity map (i.e. Tϕ = T × IdG), and show that if all the Cartesian products X⊗k,
k ≥ 1, are ergodic, the Poisson extension Z∗

π∗−→ X∗ is confined (see Theorem
??). However, in that case, the infinite measure system Z is not ergodic (even
though the Poisson suspension Z∗ is). Our second result concerns a case where Z
is ergodic. Specifically, we show that, if all the Cartesian products Z⊗k, k ≥ 1,
are ergodic, then Z∗

π∗−→ X∗ is confined (see Theorem ??). Moreover, we point
out that, although the underlying extension Z

π−→ X is compact, the Poisson
extension is not (see Lemma ??).

To conclude the chapter, we provide a concrete example of an infinite measure
system X along with a compact extension Z of X such that all Cartesian products
Z⊗k for k ≥ 1 are ergodic, as detailed in Theorem ??. This shows that Theorem
?? is not void.

In conclusion, the work from Chapter ?? is a continuation of Chapter ??, since
it explores a new and original setup in which confinement appears, which adds to
the examples of confined extensions from Section ??.

Overall, Chapters ?? and ?? give us tools to better study the structure of exten-
sions A → B given by a pair of factor σ-algebras. In the next chapter, we look at
a situation in which there appear infinite sequences (Fn)n≤0 of factor σ-algebras
(i.e. dynamical filtrations) where the structure of each extension Fn → Fn−1 is
known, and our concerns turn to the asymptotic properties of those filtrations.

A class of dynamical filtrations: weak Pinsker filtrations

For any given dynamical system X := (X,A , µ, T ), there are several factor σ-
algebras that can emerge naturally. In Chapter ??, we look at one area of study in
ergodic theory in which such factors appear: the Kolmogorov-Sinaï entropy.

This entropy was introduced by Kolmogorov and Sinaï in 1958 as an isomor-
phism invariant that measures the unpredictability of a dynamical system (see [?],
[?], [?]). It is structured as follows: for any finite set A, for a random variable
ξ0 : X → A, the entropy hµ(ξ, T ) is a real number assigned to the T -process
ξ = (ξn)n∈Z := (ξ0 ◦ T n)n∈Z that indicates the average information missing to
determine ξ0 when we know the value of the past process ξ]∞,0[. This means that
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if hµ(ξ, T ) = 0, by knowing the past values of ξ, we can determine its future:
the process becomes deterministic. On the other hand, if hµ(ξ, T ) > 0, we know
that some part of the process cannot be predicted. Then the entropy of a fac-
tor σ-algebra B is the maximal possible entropy obtained from a B-measurable
process:

hµ(B, T ) := sup{hµ(ξ, T ) ; ξ0 a B-measurable random variable}.

In that context, a natural factor to consider is ΠX, the Pinsker factor of X:
it is generated by the processes of X that have entropy 0. Equivalently, ΠX can
be defined as the largest factor of X that has entropy 0. Questions regarding the
relative structure of X over ΠX, i.e. the structure of the extension X → ΠX

(i.e. A → ΠX), have played an important role in the development of entropy in
ergodic theory ever since its inception. At the center of those questions was a par-
ticular class of systems: K-systems. They are the systems for which the Pinsker
factor is trivial, meaning that they are entirely non-deterministic. Initially, Kol-
mogorov conjectured that K-systems were all isomorphic to Bernoulli shifts, i.e.
systems generated by an i.i.d. process. Subsequently, Pinsker proved that any K-
factor of X is automatically independent of the Pinsker factor, and formulated an
additional conjecture, known as the “Pinsker conjecture”, which suggests that, on
any system X := (X,A , µ, T ), there exists a K-factor C (necessarily indepen-
dent of ΠX) such that X = ΠX ∨ C . Using the vocabulary developed in Chapter
??, we can rephrase this conjecture by saying that X → ΠX is an extension of
product-type (see Definition ??).

However, both Kolomogorov’s and Pinsker’s conjectures turned out to be false,
highlighting the complex structure of positive entropy systems. In 1970, Ornstein
solved the classification of Bernoulli shifts by showing a remarkable result [?],
[?]: Bernoulli shifts with the same entropy are isomorphic. But, using the tools he
developed, he was also able to build a non-Bernoulli K-system [?], contradicting
Kolmogorov’s conjecture. Following his work, many other examples were built,
showing that the class of non-Bernoulli K-systems is quite broad. Ornstein also
further developed his arguments to build a counterexample to Pinsker’s conjecture
[?], and he even managed to get a mixing counterexample [?]. Therefore, in gen-
eral, we have no description of the extension X→ ΠX given by a system over its
Pinsker factor.

In 1977, Thouvenot proposed to consider systems with a new structure, which
he called the weak Pinsker property: for every ε > 0, there exist a factor Πε of
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entropy ε and a Bernoulli factor B independent of Πε such that

A = Πε ∨ B mod µ.

And four decades later, in 2018, Austin [?] proved that every ergodic system sat-
isfies that property. This means that, on any ergodic system X, we have factors
over which the relative structure of X is simple, but unlike the Pinsker factor,
those factors still contain some randomness. The approach we suggest is to iter-
ate the weak Pinsker property, to obtain a new object: a weak Pinsker filtration.
Specifically, we start by fixing a decreasing sequence (εn)n≥0 that goes to 0, then
Austin’s theorem tells us that there exists a sequence of factor σ-algebras (Fn)n≤0

such that F0 = A , for every n ≤ −1, hµ(Fn, T ) = ε|n|, Fn ⊂ Fn+1 and there
exist Bernoulli factor σ-algebras (Bn)n≤0 such that

Bn ⊥⊥ Fn−1 and Fn = Fn−1 ∨Bn.

Then, we want to study those filtrations to better understand the underlying sys-
tem. To that end, weak Pinsker filtrations being dynamical filtrations, we use the
framework introduced in [?], which we also explore in Section ??. This is our
main reason for taking an interest in dynamical filtrations.

The tail σ-algebra
⋂
n≤0 Fn of any weak Pinsker filtration is equal to the

Pinsker factor ΠX of the underlying system. Moreover, the main classes of dy-
namical filtrations considered in [?] have a trivial tail σ-algebra, therefore our
proposed approach would mainly aim at distinguishing various structures of K-
systems based on the precise asymptotic properties of their weak Pinsker filtra-
tions. For now, we do not have many concrete results in that direction, but this
could be a new and interesting way to describe and classify non-Bernoulli K-
systems.

If we are going to consider weak Pinsker filtrations as a tool to understand
positive entropy systems, we need to answer some basic questions, the first of
which would regard uniqueness: we want to know if, on a given system X, it is
possible to find weak Pinsker filtrations with different behaviors. First, we point
out that on a system X, for a given sequence (εn)n≥0, the choice of a weak Pinsker
filtration (Fn)n≤n such that hµ(Fn, T ) = ε|n| is not unique. The question we are
interested in is whether all the weak Pinsker filtrations on X with the same entropy
are isomorphic. It turns out to be a surprisingly intricate problem, to which we
only give a partial answer, in the case were X is a Bernoulli shift. In that case, for
any decreasing values of entropy, we can find a weak Pinsker filtration (Fn)n≤0 of
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product type, i.e. there exists a sequence (Bn)n≤0 of mutually independent factor
σ-algebras such that

∀n ≤ 0, Fn =
∨
k≤n

Bk.

Therefore, on Bernoulli shifts, the question becomes: are all weak Pinsker fil-
trations of product-type ? In Theorem ??, we give a partial answer by proving
that, for any weak Pinsker filtration (Fn)n≤0 on a Bernoulli shift, there exists a
sub-sequence (Fnk)k≤0 which is of product type.

Finally, to help understand weak Pinsker filtrations, we build two explicit ex-
amples of such filtrations using cellular automata. The first one on a Bernoulli
shift (see Section ??) and the second one on a non-Bernoulli K-system (see Sec-
tion ??). However, despite the simplicity of their construction, many open ques-
tions still surround those examples.
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Chapter 1

Confined extensions and
non-standard dynamical filtrations

1.1 Introduction
1.1.1 Motivations

The main focus of this chapter is the study of the relation of a measure theo-
retic dynamical system with one of its factors. Given a dynamical system X :=
(X,A , µ, T ) with T invertible, we consider its factor σ-algebras, i.e. the sub-σ-
algebras B ⊂ A that are T -invariant. If B is a factor σ-algebra, we also say that
A is an extension of B, or, in short, that the pair (A ,B) is an extension, which
we denote A → B. Our purpose is to understand some of the ways in which a
factor σ-algebra can sit in A . This is a key question in ergodic theory and has
been studied from various points of view like, for example, in [?], [?], [?], [?] or
[?]. Here, our approach is largely inspired by the study of filtrations. In general, a
filtration is an ordered family of σ-algebras, so we can view an extension as a fil-
tration with only two steps. We use some vocabulary and notions from the theory
of filtrations initiated by Vershik (see [?], [?]) and its adaptation to dynamical fil-
trations, i.e. filtrations made of factor σ-algebras on a dynamical system (see [?],
[?]). In return, our study of extensions enables us to get new results on dynamical
filtrations.

First consider what is left when we remove the transformation T , which cor-
responds to the case where T = Id. Let (X,A , µ) be a standard Borel space
equipped with a Borel measure and take a countably generated sub-σ-algebra
B ⊂ A . In [?, §4], Rokhlin gave a complete description of the possible con-
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figurations that arise when we consider such objects. His approach was based on
a close study of the conditional measures (µx)x∈X obtained by decomposing µ
over B. In particular, if all of those measures are continuous (i.e. ∀x, x′ ∈ X ,
µx({x′}) = 0), then B has an independent complement: a σ-algebra C ⊂ A
such that

C ⊥⊥ B and A = B ∨ C . (1.1)

(See Section ?? for the notation). In the general case where the measures (µx)x∈X
have atoms, Rokhlin’s description is precise, but written in intricate measure the-
oretical terms. We prefer the probabilistic formulation found in [?, Proposition
3.25]: up to embedding A in a larger σ-algebra Ã , there is a σ-algebra C ⊂ Ã
such that

C ⊥⊥ B and A ⊂ B ∨ C . (1.2)

Such a C is called a super-innovation.
The study of (X,A , µ) over B that we briefly described above is what we

refer to as the «static case». Our purpose in this chapter is to study the «dynamical
case», that arises when a measure preserving transformation T is given and B is
T -invariant.

The first question we consider regarding the dynamical case is to compare it to
the setup obtained in the static case. We wonder if, in general, there always exists
a dynamical super-innovation from B to A , i.e. up to embedding X in a larger
system X̃ := (X̃, Ã , µ̃, T̃ ), a T̃ -invariant σ-algebra C satisfying (??).

We give in Example ?? an example to highlight the distinction between (static)
super-innovations and dynamical super-innovations. From now on, the term «super-
innovation» will only be used to refer to dynamical super-innovations.

We give several examples of extensions with no dynamical super-innovations,
which include A −→ τ−1A from Example ??, thus showing the first differ-
ence with the static case. To get those examples, we introduce the key notion of
confined extensions: extensions A → B such that for any joining of X with a
system Z := (Z,C , ρ, R) such that C is independent of B, we have that C is
also independent of A (see Definition ??). This is quite close to the notions of
stability and GW-property presented in [?], but it is easier to use, invariant un-
der isomorphism and applicable in a more general context, without any ergodicity
assumptions. Since stability and the GW-property implicitly require that the con-
sidered extension be relatively uniquely ergodic (see Definition ??), comparing
confinement to those properties leads us to prove that a confined extension is al-
ways isomorphic to a relatively uniquely ergodic extension. We dedicate most of
this chapter to studying the properties of confined extensions and giving various
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examples. One property is of particular interest: confined extensions do not admit
super-innovations (see Proposition ??).

As we mentioned earlier, our work on extensions finds an application to the
study of dynamical filtrations, which are filtrations of the form F := (Fn)n≤0

such that each Fn is T -invariant. The basic setup to study those objects was
introduced in [?], [?], and we present it in Section ??. A significant class that
arises in this setup is the class of standard dynamical filtrations (see Definition
??). This notion of standardness is a translation to the dynamical case of the
notion of standardness introduced by Vershik in [?] for a filtration on a probability
space. When T = Id, those two notions are equivalent.

The fact that a dynamical filtration F is standard imposes some structure on
the extensions Fn+1 → Fn. To formalize that, we introduce the notion of stan-
dard extension (see Definition ??), which is a weaker property than admitting a
super-innovation. The definition of standard extensions is chosen so that, for a
standard dynamical filtration F , every extension Fn+1 → Fn is standard. Al-
though it is more difficult than finding confined extensions, we also manage to
build a non-standard extension, further emphasizing the variety of structures that
can arise in the dynamical case.

In the static case, there are several equivalent criteria to characterize standard
filtrations, one of them being I-cosiness. This notion translates to the dynamical
case (see [?, Definition 3.7] or Section ??). Although it was shown in [?] that
standard dynamical filtrations are I-cosy, the converse result was left as an open
question. We see in Proposition ?? that the existence of non-standard extensions
gives a negative answer. This is the initial motivation for the work we present in
this chapter.

Outline of the chapter

In Sections ?? and ??, we define the main properties that we want to study and we
use compact extensions to give concrete examples. In particular, compact exten-
sions give us many examples of confined extensions (see Theorem ??, Proposition
??), but they are all standard (see Lemma ??). In Section ??, we see that T, T−1

transformations give non-compact confined extensions (see Theorem ??), and we
show that, provided T has the so-called PID property, we get a non-standard ex-
tension (see Theorem ??). The PID (pairwise independently determined) property
was introduced by Del Junco and Rudolph in [?], and we recall it in Definition ??.

Finally, we give in Section ?? the details of our application of the existence of
non-standard extensions to the study of dynamical filtrations.
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1.1.2 Notation

A dynamical system is a quadruple X := (X,A , µ, T ) such that (X,A , µ) is
a Lebesgue probability space, and T is an invertible measure-preserving trans-
formation. We denote P(X) the set of probability measures on (X,A ) and
PT (X) ⊂P(X) the set of T -invariant probability measures.

Let B,C ⊂ A be sub-σ-algebras. We write B ⊂ C mod µ, if for every
B ∈ B, there exists C ∈ C such that µ(B∆C) = 0. Then, B = C mod µ if
B ⊂ C mod µ and C ⊂ B mod µ. We denote B ∨C the smallest σ-algebra that
contains B and C . We say that B is a factor σ-algebra (or T -invariant σ-algebra)
if T−1(B) = B mod µ. Let B,C and D be sub-σ-algebras of A . We say that
B and C are relatively independent over D if for any B-measurable bounded
function B and C -measurable bounded function C

E[BC |D ] = E[B |D ] E[C |D ] almost surely.

In this case, we write B ⊥⊥D C . If D is trivial, B and C are independent, which
we denote B ⊥⊥ C .

If we have two systems X := (X,A , µ, T ) and Y := (Y,B, ν, S), a factor
map is a measurable map π : X −→ Y such that π∗µ = ν and π ◦ T = S ◦ π,
µ-almost surely. If such a map exists, we say that Y is a factor of X and we
denote σ(π) := π−1(B) the σ-algebra generated by π. Conversely, we also say
that X is an extension of Y or that Y is embedded in X. Moreover, if there exist
invariant sets X0 ⊂ X and Y0 ⊂ Y of full measure such that π : X0 −→ Y0 is a
bijection, then π is an isomorphism and we write X ∼= Y.

For a given factor σ-algebra B, in general, the quadruple (X,B, µ, T ) is not
a dynamical system since B need not separate points on X , and in this case
(X,B, µ) is not a Lebesgue probability space. However, there exist a dynamical
system Y and a factor map π : X −→ Y such that σ(π) = B mod µ. Moreover,
although this representation is not unique, for a given factor B, there is a canon-
ical construction to get a system X/B and a factor map pB : X −→ X/B such
that σ(pB) = B mod µ (see [?, Chapter 2, Section 2]).

A joining of X := (X,A , µ, T ) and Z := (Z,C , ρ, R) is a (T ×R)-invariant
measure λ on X×Z whose marginals are µ and ρ. It yields the dynamical system

X×λ Z := (X × Z,A ⊗ C , λ, T ×R).

On this system, the coordinate projections are factor maps that project onto X
and Z respectively. So X ×λ Z is an extension of X (or Z) via the coordinate
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projection. If it is not necessary to specify the measure, we will simply write
X × Z. For the product joining, we will use the notation X ⊗ Z := X ×µ⊗ρ Z.
For the n-fold product self-joining, we will write X⊗n.

Let X̂ be system of which X is a factor, via a factor map pX : X̂ −→ X. Any
object defined on X has a copy on X̂:

Definition 1.1.1. Let pX : (X̂, Â , µ̂, T̂ )→ (X,A , µ, T ).

• If B ⊂ A is a sub-σ-algebra, we call p−1
X (B) the copy of B on X̂.

• If π : X −→ Y is a factor map, we say that π ◦ pX is the copy of π on X̂.

• The copy of A on X̂ will also be called the copy of X on X̂.

When there is no confusion, we will still denote those copies B, π, and X. We will
also say that those copies are embedded in X̂.

When X̂ is a self-joining of X, all objects defined on X will have multiple
copies on X̂: in this case we will add a number to identify each copy. For example,
on X×n, we will denote Bk := p−1

k (B), where pk is the projection on the k-th
coordinate.

Assume that X and Z have a common factor, i.e. there are B ⊂ A and
B̃ ⊂ C such that X/B

∼= Z/B̃. Equivalently, X and Z have a common factor
if there are a system Y := (Y,D , ν, S) and two factor maps π : X −→ Y and
π̃ : Z −→ Y. In this case, decompose µ and λ over π and π′ respectively

µ :=

∫
Y

µydν(y) and λ :=

∫
Y

λydν(y).

We define the relatively independent product of X and Z over this common factor
from the joining

µ⊗Y λ :=

∫
Y

µy ⊗ λydν(y).

We will denote the resulting system X⊗Y Z or X⊗(B,B̃) Z. It has the following
well-known property (see [?, Proposition 6.11]):

Lemma 1.1.2. Let B,C ⊂ A be two factor σ-algebras. Then B and C are
independent if and only if, in the relatively independent product of X over B, the
two copies of C are independent.
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Proof. Take a factor map π : X −→ Y such that σ(π) = B. Let f a C -
measurable random variable and denote f1 and f2 it’s copies in X ⊗Y X. Using
the Cauchy-Schwartz inequality, we have∫

X×X
f1f2d(µ⊗Y µ) =

∫
Y

(∫
X

fdµy

)2

dν(y) ≥
(∫

Y

∫
X

fdµydν(y)

)2

=

∫
X×X

f1d(µ⊗Y µ) ·
∫
X×X

f2d(µ⊗Y µ).

Therefore, using the equality condition, this yields that f1 and f2 are uncorrelated
if and only if y 7→

∫
fdµy is ν-almost surely constant. Therefore, f1 and f2 are

uncorrelated if and only if f is independent of B. One can now prove our lemma
with a straightforward reasoning.

Indeed, if C is independent of B, the above argument is not even necessary, as
the result follows from the construction of the relative product. Conversely, if the
copies of C in X ⊗Y X are independent, for any C -measurable random variable
f , the copies of f in X⊗Y Xare independent. The above argument tells us that f
is independent of B, and therefore C is independent of B.

1.2 Product type, standardness and super-innovations
for extensions

Let X := (X,A , µ, T ) be a dynamical system. We call extension on X a pair of
factor σ-algebras Ã , B ⊂ A such that B ⊂ Ã , and we denote it Ã → B. To
avoid introducing too many notations, we will usually take Ã = A .

For a given extension A → B where A is the full σ-algebra on X, we
know that there is a factor map π : X −→ Y, unique up to isomorphism, such
that σ(π) = B mod µ (see Section ??). For such a factor map, we say that the
extension A → B is given by π, and we note it X

π−→ Y. This representation of
extensions is useful in the more concrete cases, but for a general discussion, we
find it more convenient to write extensions in terms of T -invariant σ-algebras.

We first need a notion of isomorphism:

Definition 1.2.1. Let X1 := (X1,A1, µ1, T1) and X2 := (X2,A2, µ2, T2) be dy-
namical systems. Two extensions C → D and I → J on X1 and X2 respec-
tively are isomorphic if there exists an isomorphism Φ : X1/C −→ X2/I such
that ΦD = J mod µ2.
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In the case where the extensions are given by two factor maps π1 : X1 −→ Y1

and π2 : X2 −→ Y2, they are isomorphic if there are two isomorphisms ϕ :
X1 −→ X2 and ψ : Y1 −→ Y2 such that the following diagram is commutative:

X1
ϕ //

π1
��

	

X2

π2
��

Y1
ψ //Y2

We write the following definitions in terms of extensions given by factor σ-
algebras, but they can all be translated for extensions given by a factor map simi-
larly to Definition ??. We then recall the concept of immersion (see [?]), which,
in the theory of filtrations, expresses the idea of a «sub-filtration»:

Definition 1.2.2. Let X̂ := (X̂, Â , µ̂, T̂ ) be a dynamical system and A → B
and D → E be extensions defined on X̂. We say that A → B is immersed in
D → E if we have A ⊂ D , B ⊂ E and

A ⊥⊥B E .

If A → B is an extension defined on a dynamical system X̂1 := (X̂1, Â1, µ̂1, T̂1)

and D → E is defined on another system X̂2 := (X̂2, Â2, µ̂2, T̂2), we say that
A → B is immersible in D → E if it is isomorphic to an extension on X̂2

immersed in D → E .

Definition 1.2.3. Let X := (X,A , µ, T ) be a dynamical system and A → B an
extension defined on X. We say that A → B is of product type if there exists a
factor σ-algebra C ⊂ A such that B ⊥⊥ C and A = B ∨ C mod µ.

We can finally define standard extensions:

Definition 1.2.4. An extension is standard if it is immersible in a product type
extension. More explicitly, an extension A → B defined on X := (X,A , µ, T )
is standard if X can be embedded in a system X̂ on which there is an extension
B̃ → B and a factor σ-algebra C such that A ⊥⊥B B̃, C is independent of B̃
and A ⊂ B̃ ∨ C .

For example, we show below that all compact extensions are standard.

Definition 1.2.5. Let X := (X,A , µ, T ) and Y := (Y,B, ν, S) be dynamical
systems. An extension X

π−→ Y is compact if, up to isomorphism, there exists a
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compact group G, equipped with its Haar measure mG, and a measurable map
ϕ : Y −→ G such that X = (Y ×G, ν ⊗mG, Sϕ), where Sϕ is given by

Sϕ : (y, g) 7−→ (Sy, g · ϕ(y)).

We denote it Y nϕ G := X.

Lemma 1.2.6. A compact extension is standard.

Proof. Let X := Y nϕ G be a compact extension of Y. Denote G1 and G2 two
copies of G and consider Z, the system on (Y × G1 × G2, ν ⊗mG ⊗mG) given
by the transformation

(y, g1, g2) 7→ (Sy, g1 · ϕ(y), g2 · ϕ(y)),

or, in short, Z := Ynϕ×ϕ(G1⊗G2). It is isomorphic to the 2-fold relative product
of X over Y and can be viewed as in the following diagram

For i = 1, 2, denote Xi := Y nϕ Gi. The structure of the compact extension
enables us to consider the factor map

α : (y, g1, g2) 7→ g1 · g2
−1,

which is independent of the coordinates (y, g2) that generate X2, because of the
invariance of the Haar measure. It is a factor map onto the identity map on G and
satisfies

σ(y, g1, g2) = σ(y, g2) ∨ σ(α).

This proves that the extension Z −→ X2 is of product type. Finally, since the
coordinates y, g1 and g2 are mutually independent, X1 and X2 are relatively in-
dependent over Y. This means that X1 −→ Y is immersed in Z −→ X2, and
therefore it is standard.

We also introduce an intermediate property between product type and stan-
dardness:
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Definition 1.2.7. Let X := (X,A , µ, T ) be a dynamical system and A → B
an extension defined on X. We say that A → B admits a super-innovation if
there exists a system X̂ := (X̂, Â , µ̂, T̂ ) which extends X such that the extension
Â → B is of product type, i.e. there is a factor σ-algebra C on X̂ independent
of B such that A ⊂ Â = B ∨ C mod µ̂.

An extension that admits a super-innovation is standard because, keeping the
notations from the definition, we have that A → B is immersed in Â → B and
Â → B is of product type.

Remark 1.2.8. For an extension given by a factor map π : X −→ Y, we can
rewrite the definition of standardness using super-innovations. First, we see that
an extension given by π admits a super-innovation if there exists a system Z and
a factor map ϕ : Z⊗Y −→ X such that the following diagram is commutative:

Z⊗Y
ϕ //

p
##GGGGGGGGG X

π
��

Y

.

Next, X
π−→ Y is standard if there exists an extension Ỹ

α−→ Y such that
X⊗Y Ỹ

π̃−→ Ỹ admits a super-innovation.
Indeed, if X ⊗Y Ỹ

π̃−→ Ỹ has a super-innovation, we have a system Z such
that X ⊗Y Ỹ

π̃−→ Ỹ is immersible in Z ⊗ Ỹ
p−→ Ỹ. Moreover, since, in

X ⊗Y Ỹ, we have that X is relatively independent of Ỹ over Y, we get that
X

π−→ Y is immersible in X ⊗Y Ỹ
π̃−→ Ỹ. Therefore, X

π−→ Y is immersible
in Z⊗ Ỹ

p−→ Ỹ, which means it is standard.
Conversely, if X

π−→ Y is standard, there are two systems Z and Ỹ such that
X

π−→ Y is immersible in Z ⊗ Ỹ
p−→ Ỹ. This means we have two factor maps

α and β and the following commutative diagram

Z⊗ Ỹ
p //

β
��

	

Ỹ

α

��
X π //Y

,

in which X and Ỹ are relatively independent over Y. Therefore the product map
β× p : Z× Ỹ −→ X× Ỹ is a factor map from Z⊗ Ỹ onto X⊗Y Ỹ which sends
Ỹ onto Ỹ. This means that Z is a super-innovation for X⊗Y Ỹ

π̃−→ Ỹ.
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The following proposition deals with the static case.

Proposition 1.2.9. Let X := (X,A , µ, T ) be a dynamical system and A → B
an extension defined on X. If T acts as the identity map on A , i.e. for all A ∈ A ,
T−1A = A mod µ, then A → B admits a super-innovation.

Proof. Since our definition of “dynamical” super-innovation, when T acts as the
identity map, is equivalent to the definition for the static case, the lemma follows
from [?, Proposition 3.25].

Example 1.2.10. We give here an example to highlight the distinction between
(static) super-innovations and dynamical super-innovations.

Take (εn)n∈Z a sequence of independent coin tosses with 1 or −1 on each
side of the coin, and A the associated σ-algebra. Consider the σ-algebra B :=
τ−1A ⊂ A generated by the cellular automaton

τ : {±1}Z −→ {±1}Z
(εn)n∈Z 7−→ (εnεn+1)n∈Z

.

From the study done in [?], we know that the σ-algebra generated by ε0 gives a
static super-innovation (it is even an independent complement) from τ−1A to A .
However, if we consider the dynamics given by the shift

T : (εn)n∈Z 7→ (εn+1)n∈Z,

then τ−1A is a factor σ-algebra, but the σ-algebra generated by the projection
(εn)n∈Z 7→ ε0 is not an invariant factor and therefore gives no information about
the dynamical structure of ({±1}Z,A , µ, T ) over τ−1A .

Remark 1.2.11. Super-innovations give an intermediate property between prod-
uct type extensions and standardness. Let us give examples here to show that it is
not equivalent to either of these properties. We can sum that up in the following
diagram:

Product type
⇒
: Admits a super-innovation

⇒
: Standard

A standard extension with no super-innovation

As we have already mentioned, compact extensions are standard, but we will show
that, in many cases, they do not admit a super-innovation. For a concrete example,
consider the Anzai product given by the map

T : (x, y) 7→ (x+ α, y + x), with α ∈ R\Q,
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on the torus equipped with the Lebesgue measure. It is a compact, and therefore
standard, extension of the rotation of angle α, but we will see that it has no super-
innovation (Proposition ?? and Proposition ??).

An extension which is not of product type but that admits a super-innovation

There already exist examples in the static case of extensions admitting super-
innovations without being of product type, but here we build an ergodic exam-
ple. We will denote Z := ({a, b}, λ, R) the ergodic two points system on {a, b}
(we could replace Z by any automorphism with no square root). Denote Y :=
({1, 2}, ν, S) the two points system on {1, 2}, and define X to be the system on
the product space ({1, 2} × {a, b}, ν ⊗ λ) given by the map

T (i, z) :=

{
(2, Rz) if i = 1
(1, z) if i = 2

.

As we see on the following diagram, X is simply a cyclic four points system on
{1, 2} × {a, b}:

If A is the full σ-algebra on X and B the factor generated by the projection
on {1, 2}, the extension A → B admits a super-innovation. Indeed, consider the
transformation R̂ : (z1, z2) 7→ (z2, Rz1) and the system Ẑ := (Z × Z, λ ⊗ λ, R̂).
Finally, define X̂ as the direct product of the two points system on {1, 2}, i.e. Y,
and Ẑ, which extends X via the factor map

π : X̂ −→ X
(i, z1, z2) 7−→ (i, zi)

.
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An orbit on X̂ goes as follows 1
a
b

 � S×R̂ //

 2
b
b

 � S×R̂ //

 1
b
a

 � S×R̂ //

 2
a
a

 � S×R̂ //

 1
a
b


︸ ︷︷ ︸
(

1
a

)
� T //

(
2
b

)
� T //

(
1
b

)
� T //

(
2
a

)
� T //

(
1
a

)
It is then clear that Ẑ gives us the desired super-innovation.

However, the extension A → B is not of product type. Indeed, if it were,
there would exist a system W := (W, γ,Q) and an isomorphism Φ : Y⊗W −→
X which sends Y onto Y. In other words, there would exist two measure preserv-
ing bijections ϕi : W −→ Z for i = 1, 2 such that

Φ(i, w) = (i, ϕi(w)) almost surely.

Then, the identity Φ ◦ (S ×Q) = T ◦ Φ would become:

ϕ−1
2 ◦R ◦ ϕ1 = Q = ϕ−1

1 ◦ ϕ2.

This would give
R = ϕ2 ◦ ϕ−1

1 ◦ ϕ2 ◦ ϕ−1
1 = ϕ ◦ ϕ,

with ϕ := ϕ2 ◦ ϕ−1
1 . Since ϕ ∈ Aut(Z, λ), this would contradict the fact that R

has no square root.

1.3 Confined extensions
In trying to build non-standard extensions, we first look for extensions with no
super-innovations. The notion of confined extension that we introduce in this sec-
tion follows that purpose, relying on the non-trivial joining properties associated
to super-innovations. The link between confined extensions and super-innovations
will be detailed in Section ??.
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1.3.1 Definitions, basic properties and examples

Definition 1.3.1. Let X := (X,A , µ, T ) be a dynamical system and B be a factor
σ-algebra. The extension A → B is said to be confined if it satisfies one of the
following equivalent properties:

(i) every 2-fold self-joining of X in which the two copies of B are independent
is the product joining;

(ii) for every system Z and every joining of X and Z in which the copies of B
and Z are independent, the copies of A and Z are independent;

(iii) for every n ∈ N∗ ∪ {+∞}, every n-fold self-joining of X in which the n
copies of B are mutually independent is the n-fold product joining.

For a more explicit formulation, if the extension is given by a factor map
π : X −→ Y, with Y := (Y,C , ν, S), properties (i) and (ii) become:

(i) every T×T -invariant measure λ onX×X such that λ(·×X) = λ(X×·) =
µ and (π × π)∗λ = ν ⊗ ν must be equal to µ⊗ µ;

(ii) for every system Z := (Z,D , ρ, R), every T × R-invariant measure λ on
X × Z such that λ(· × Z) = µ, λ(X × ·) = ρ and (π × IdZ)∗λ = ν ⊗ ρ
must be equal to µ⊗ ρ.

We will prove the equivalence of (i), (ii) and (iii) in Proposition ??. Let us present
here some examples of confined extensions:

Compact extensions. This is the most well known family of extensions, and it is
therefore natural to start our study with them. We have a criterion for the confine-
ment of compact extensions, which we state below. We thank Mariusz Lemań-
cyzk for suggesting this criterion. Let X := (X,A , µ, T ), Y := (Y,B, ν, S)
and X

π−→ Y be a compact extension, i.e. X = Y nϕ G, using notations from
Definition ??. Consider the ergodic decomposition of ν ⊗ ν:

ν ⊗ ν :=

∫
ρω dP(ω).

This gives a (not necessarily ergodic) decomposition of ν ⊗ ν ⊗mG ⊗mG:

ν ⊗ ν ⊗mG ⊗mG =

∫
ρω ⊗mG ⊗mG dP(ω).
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We can switch the coordinates from (Y × G) × (Y × G) to Y × Y × G × G so
that Sϕ × Sϕ become

(S × S)ϕ×ϕ : (y1, y2, g1, g2) 7→ (Sy1, Sy2, g1 · ϕ(y1), g2 · ϕ(y2)).

Each measure ρω ⊗mG ⊗mG is invariant under (S × S)ϕ×ϕ.

Theorem 1.3.2. The following are equivalent:

(i) The extension X
π−→ Y is confined;

(ii) The product extension X⊗X
π×π−→ Y ⊗Y is relatively ergodic;

(iii) For P-almost every ω, the measure ρω ⊗ mG ⊗ mG is ergodic under (S ×
S)ϕ×ϕ.

In particular, weakly mixing compact extensions are confined.

In Section ??, we will study the link between confinement and Robinson’s notion
of stable extensions. We can deduce the weakly mixing case of Theorem ?? from
Robinson’s work by combining [?, Corollary 3.8] and Lemma ?? (i). See Section
?? for a full proof of the theorem. Our theorem is easy to use for weakly mixing
compact extensions, but for the non-weakly mixing case, our condition is more
involved. In Section ??, we give an application in the non-weakly mixing case
with an Anzai skew-product (see Proposition ??). We also give an example of a
non-confined ergodic compact extension, illustrating that some condition is still
necessary for compact extensions to be confined.

T, T−1 transformations. Using arguments from Lemańczyk and Lesigne [?], we
show that, provided T 2 is ergodic, T, T−1 transformations yield confined exten-
sions (see Theorem ??). Moreover, if T is weakly mixing, the T, T−1 extension
is confined and not compact (see Corollary ??). Finally we show that, with more
assumptions on T , we get an additional property: it is not standard (see Theorem
??).

Flow extensions. A generic flow extension of a weakly mixing system is con-
fined (see [?, Section 8] for the definitions). We do not discuss those examples in
detail here, but Robinson showed in [?] that such extensions have the GW-property
and we show below that this property yields confinement (see Proposition ??).
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Totally confined systems. We can build systems with a surprising property: they
are a confined extension of any non-trivial factor. We call them totally confined
systems. The existence of such systems with non-trivial factors follows from the
work done in [?]: a system verifying the JP-property is totally confined. Building
on similar arguments, it can be shown that any system whose reduced maximal
spectral type σ is disjoint from σ ∗ σ is totally confined.

The key proposition is the following, where we prove the equivalence from
Definition ??:

Proposition 1.3.3. Properties (i), (ii) and (iii) in Definition ?? are equivalent.
Therefore, either of those properties can be used as a definition of confined exten-
sions.

Proof. (i)⇒ (ii). Assume that the extension A → B satisfies property (i). Let
Z be a dynamical system and let λ ∈ P(X × Z) yield a joining of X and Z,
X ×λ Z, for which B and Z are independent. The key ingredient of our proof is
the relatively independent product and the Lemma ??. We look at the system

(X×λ Z)⊗Z (X×λ Z),

i.e. the relatively independent product of X×λZ over Z. By taking the projection
on X × X , we get a self-joining γ of X. Because of our assumption on λ and
Lemma ??, the copies of B in X ×γ X are independent. Therefore, by property
(i), we have γ = µ ⊗ µ. This means that on (X×λ Z)⊗Z (X×λ Z), the copies
of A are independent. However, using again Lemma ??, this is only possible if
A is independent of Z in X×λ Z. And this gives us property (ii).

(ii)⇒ (iii). Assume that A → B satisfies property (ii). Let n ∈ N (if n =
+∞, we only need to show that finite families of copies of A are mutually
independent) and let Z := X × · · · × X be a n-fold joining of X for which
the copies of B are independent. We show by induction on k that the family
(A1, ...,Ak,Bk+1, ...,Bn) is mutually independent. The case k = 0 is simply
our assumption on Z. If the property is true for k, then Bk+1 is independent of
(A1, ...,Ak,Bk+2, ...,Bn), therefore, using (ii), we get that Ak+1 is independent
of (A1, ...,Ak,Bk+2, ...,Bn). Since the family (A1, ...,Ak,Bk+2, ...,Bn) is mu-
tually independent, it implies that (A1, ...,Ak,Ak+1,Bk+2, ...,Bn) is mutually
independent. The case k = n ends our proof.

(iii)⇒ (i). Simply take n = 2.
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Remark 1.3.4. To avoid complicating notations, we defined the notion of con-
fined extension for an extension A → B defined on X := (X,A , µ, T ), but this
does not take into account extensions on X of the form B → C , with B 6= A .
One can still use the setup of Definition ?? because we know that there is a factor
map pB : X → X/B such that σ(pB) = B, and, since C ⊂ B, there is Ĉ on
X/B such that p−1

B (Ĉ ) = C mod µ. Then, we say that B → C is confined if
X/B → Ĉ is confined. But this is equivalent to saying that B → C is confined
if, for any self-joining of X on which the copies of C are independent, the copies
of B are independent. This equivalence follows from the fact that any joining of
X/B can be extended to a joining of X, by taking the relative product over X/B.

Let us state some simple manipulations possible with confined extensions:

Proposition 1.3.5. Let X := (X,A , µ, T ) be a dynamical system. Let C ⊂ B ⊂
A be factor σ-algebras. The extension A → C is confined if and only if the
extensions A → B and B → C are both confined.

Proof. Assume that A → B and B → C are confined. Take X ×λ X a self-
joining of X in which the copies of C are independent. Because B → C is
confined, it follows that the copies of B are independent. Finally, since A → B
is confined, the copies of A are independent, and λ is the product joining.

Conversely, assume that A → C is confined. Then A → B is confined
because in any joining of X where the copies of B are independent, the copies of
C are also independent (since C ⊂ B). For the case of B → C , we use Remark
??. We can take λ a self-joining of X on which the copies of C are independent.
Because A → C is confined, λ is the product joining, and therefore the copies of
B are independent. This proves that B → C is confined.

Proposition 1.3.6. Let X̂ := (X̂, Â , µ̂, T̂ ) be a dynamical system, A → B be a
confined extension on X̂ and let C ⊂ Â be a factor σ-algebra independent of A .
Then the extension A ∨ C → B ∨ C is confined.

Proof. Let Z be a dynamical system and take a joining with X in which B ∨ C
is independent of Z. Therefore, B, C and Z are mutually independent, so B is
independent of C ∨ Z. Using the definition of confined extensions, this implies
that A is independent of C ∨ Z. This means that A ∨ C is independent of Z,
which shows that the extension A ∨ C → B ∨ C is confined.

Remark 1.3.7. Let us however note that some manipulations on confined exten-
sions are not always true:
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(i) For two confined extensions A → B and Ã → B over a same factor,
we cannot conclude that the joint extension A ∨ Ã → B is confined.
Therefore, in this case, there is no « largest confined extension of B »,
since such an extension would contain A ∨ Ã . A counterexample, which
relies on compact extensions, can be found in Example ??.

(ii) Our first remark implies that the independence condition in Proposition ??
cannot be removed. Indeed, take A , Ã and B such that A → B and
Ã → B are confined but A ∨ Ã → B is not. We have

A ∨ Ã → B ∨ Ã = Ã → B.

By Proposition ??, A ∨ Ã → B ∨ Ã cannot be confined, even though
A → B is.

1.3.2 Confined extensions do not admit a super-innovation

We mentioned in the previous section that our initial interest in confined exten-
sions stemmed from the fact that they do not admit super-innovations. Let us
prove this here. We need the following (and basic) result:

Lemma 1.3.8. Let (X,µ) be a probability space. Let A , B and C be σ-algebras
such that B ⊂ A , A ⊂ B∨C mod µ and C is independent of A . Then A = B
mod µ.

Proof. Let A be a bounded real-valued A -measurable random variable. Since
A ⊂ B ∨ C , we have

A = E[A |B ∨ C ].

To identify the right-hand term, take a B-measurable bounded random variable B
and a C -measurable bounded random variable C. Since C is independent of A
and B ⊂ A , we know that AB and C are independent, so

E[ABC] = E[AB] E[C]

= E
[
E[A |B]B

]
E[C]

= E
[
E[A |B]BC

]
.

So
A = E[A |B ∨ C ] = E[A |B],

which means that A is B-measurable. Therefore, A ⊂ B mod µ.
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We can now show that super-innovations and confined extensions are incom-
patible:

Proposition 1.3.9. Assume that B is a proper factor σ-algebra of the system
X := (X,A , µ, T ) (i.e. we assume that B 6= A ) and that the extension A → B
admits a super-innovation. Then A → B is not confined.

Proof. By assumption, A → B admits a super-innovation, so there exist a sys-
tem Z and a joining X ×λ Z in which B and Z are independent and we have
A ⊂ B ∨ Z mod λ. However, if A → B were confined, A and Z would be
independent. Now using Lemma ??, we would get A = B mod µ, which contra-
dicts our assumption.

Combining this with Proposition ??, we get the following corollary, which is
very useful when we want to show that an extension is not confined.

Corollary 1.3.9.1. Let X := (X,A , µ, T ) be a dynamical system. If the extension
A → B is confined, then for any factor σ-algebra Ã such that B ( Ã ( A
mod µ, neither A → Ã nor Ã → B admit a super-innovation. In particular,
there cannot be a factor in A independent of B.

Example 1.3.10. Let us use our corollary to illustrate Remark ??. Take a system
Y, a measurable map ϕ : Y −→ G and consider the system YnϕG as defined in
Definition ??. Because of Theorem ??, we can choose YnϕG so that the resulting
compact extension is confined. As in the proof of Lemma ??, take G1 and G2 two
copies of G and consider Z, the system on (Y × G1 × G2, ν ⊗mG ⊗mG) given
by the transformation

(y, g1, g2) 7→ (Sy, g1 · ϕ(y), g2 · ϕ(y)).

In this case, Z −→ Y is the supremum of the compact extensions YnϕG1 −→ Y
and Y nϕ G2 −→ Y. However, the invariant map

α : (y, g1, g2) 7→ g2 · g−1
1

is independent from Y. Therefore, Corollary ?? tells us that Z −→ Y is not
confined.

This gives an example of a supremum of two confined extensions which is not
confined.
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1.3.3 Lifting results

In this section we list some properties of a dynamical system which are automat-
ically lifted to any confined extension. Such results are not surprising. Indeed,
we show in the next section that confined extensions resemble Robinson’s stable
extensions which he developed specifically to get lifting results [?].

Proposition 1.3.11. Let Z be a family of dynamical systems. Let P be a property
of a system that can be characterized as follows: a system X satisfies P if and
only if, for every Z ∈ Z , X is disjoint from Z. If Y satisfies P and the extension
X

π−→ Y is confined, then X satisfies P .

Proof. It follows from Definition ?? (ii). Let P and Z be as in the proposition.
Let X := (X,A , µ, T ) and Y := (Y,B, ν, S). Assume that X

π−→ Y is a
confined extension and that Y satisfies P . Let Z := (Z,C , ρ, R) ∈ Z and
λ ∈P(X×Z) be a joining of X and Z. We know that (π× IdZ)∗λ is a joining of
Y and Z, and since those systems are disjoint, it implies that (π×IdZ)∗λ = ν⊗ρ.
And, since X

π−→ Y is confined, Definition ?? (ii) implies that λ = µ ⊗ ρ. So
X and Z are disjoint. This being true for every Z ∈ Z implies that X satisfies
P .

Using this proposition, we can prove that many properties are preserved under
confined extensions:

1. Ergodicity: X is ergodic if and only if it is disjoint from every identity
system (see [?, Theorem 6.26]).

2. Weak mixing: X is weakly mixing if and only if it is disjoint from every
system with discrete spectrum (see [?, Theorem 6.27]).

3. Mild mixing: X is mildly mixing if and only if it is disjoint from every rigid
system (see [?, Corollary 8.16]).

4. K-property: X is a K-automorphism if and only if it is disjoint from every
0-entropy system (see [?, Theorem 18.16]).

Remark 1.3.12. Conversely, one can use confinement to characterize disjointness
from a family of systems. For example, the systems disjoint from all ergodic
systems are the confined extensions of identity map systems (see [?, Theorem
3.1]).
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We can also prove that other properties are preserved under confined exten-
sions. In the following proposition, we prove this to be true for mixing of all
orders:

Definition 1.3.13. Let n ≥ 2. A system X is n-mixing if for all measurable sets
A1, ..., An ⊂ X we have

lim
k1,...,kn−1→∞

µ(A1 ∩ T−k1A2 ∩ · · · ∩ T−(k1+···+kn−1)An) = µ(A1) · · ·µ(An).

Proposition 1.3.14. Let n ≥ 2. If Y is n-mixing and the extension X
π−→ Y is

confined, then X is n-mixing.

Proof. Let Jn(µ) ⊂P(Xn) be the set of n-fold joinings of µ. We endow it with
the topology given by: λp −→

p→∞
λ if

∀A1, ..., An ∈ A , λp(A1 × · · · × An) −→
p→∞

λ(A1 × · · · × An).

With this topology, Jn(µ) is a compact metrizable space (see [?]).
For k := (k1, ..., kn−1) ∈ Nn−1, let us consider the off-diagonal joining on

Xn:
µk :=

∫
X

δx ⊗ δTk1x ⊗ · · · ⊗ δTk1+···kn−1xdµ(x),

and similarly define νk on Y n. We can re-write the definition of n-mixing as

µk −→
k→∞

µ⊗n.

We also define πn := π × · · · × π and Tn := T × · · · × T .
It suffices to check that the only limit point of (µk)k∈Nn−1 as k goes to ∞ is

µ⊗k. Using the compactness of Jn(µ), fix a sequence (k(i))i∈N on Nn−1 such that,
for every ` ∈ {1, ..., n− 1}

lim
i→∞

k`(i) = +∞,

and
µk(i) −→

i→∞
λ,

for some measure λ on Xn. Clearly, λ is a Tn-invariant measure which projects
to µ on each coordinate, and that means that it defines a n-fold joining of X.
Moreover, we have (πn)∗µk = νk, which yields

(πn)∗λ = lim
i→∞

νk(i) = ν⊗n,

30



where we use the n-mixing property of Y to get the last equality. Finally, since
the extension X

π−→ Y is confined, using property (iii) from Definition ??, we
must have λ = µ⊗n.

Since this computation works for any converging subsequence of off-diagonal
joinings, we have proved that µk −→

k→∞
µ⊗n, which means that X is n-mixing.

Using again property (iii) from Definition ??, we can easily prove that Del
Junco and Rudolph’s PID property is preserved under confined extensions. We
first recall the definition:

Definition 1.3.15 (Del Junco and Rudolph [?]). Let X be a dynamical system
and n ∈ N ∪ {+∞}. We say that X has the n-fold PID (pairwise independently
determined) property if the only n-fold self-joining of X in which the copies of X
are pairwise independent is the product joining.

We then have:

Proposition 1.3.16. If Y has the n-fold PID property and the extension X
π−→ Y

is confined, then X has the n-fold PID property.

Proof. It follows from property (iii) in Definition ??.

We can also see that confined extensions preserve the Kolmogorov-Sinaï en-
tropy:

Proposition 1.3.17. If X
π−→ Y is a confined extension, then h(X) = h(Y).

Moreover, if X is a K-automorphism of finite entropy, the converse is true: the
extension X

π−→ Y is confined if and only if h(X) = h(Y).

The second part of the proposition was pointed out to us by Christophe Leuri-
dan.

Proof. Assume that h(X) > h(Y). Using Thouvenot’s relative version of Sinaï’s
theorem, we know there exists a Bernoulli factor of X with entropy h(X)−h(Y)
which is independent of Y (we can get that result from [?, Proposition 2]). But we
have seen in Corollary ?? that a confined extension of Y can have no non-trivial
factors independent of Y, therefore X

π−→ Y is not confined. This proves the
first part of the proposition.

To prove the second part, we will use [?, Lemma 2]. It gives a relative version
of the disjointness of K-automorphisms and 0-entropy systems: On a dynamical
system (Z,C , ρ, R), take two R-invariant σ-algebras A and B such that B ⊂ A

31



and h(A , R) = h(B, R) < ∞. Next, take a third R-invariant σ-algebra D with
finite entropy such that (D , R) has the K-property and D is independent of B.
Then, D is independent of A .

Assume that X is a K-automorphism of finite entropy and that h(X) = h(Y).
Let λ yield a self-joining X1 ×λ X2 in which the copies of Y are independent.
First, Y2 has the K-property and is independent of Y1. Moreover, h(X1) =
h(Y1), so [?, Lemma 2] tells us that Y2 is independent of X1. Similarly, X1 has
the K-property and is independent of Y2. Since h(X2) = h(Y2), [?, Lemma 2]
tells us that X1is independent of X2.

However, not all properties are preserved under confined extensions:

1. Rigidity: the system studied in Proposition ?? and Proposition ?? gives an
example of a non-rigid confined extension of a rigid factor. We recall the
definition of rigidity in Definition ??.

2. The Bernoulli and loosely Bernoulli properties: we show in Theorem ?? that
a T, T−1 transformation is a confined extension of its natural Bernoulli fac-
tor (provided T 2 is ergodic), but, when T is given by a Bernoulli shift, Ka-
likow proved in [?] that the T, T−1 transformation is not loosely Bernoulli
(and therefore not Bernoulli either).

1.3.4 Confinement, stability and GW-property

In studying confined extensions, we found in the literature similar notions : sta-
bility and GW-property. The purpose of this section is to compare confinement to
those properties.

A key notion of this section will be the following.

Definition 1.3.18. Let X := (X,A , µ, T ) and Y := (Y,B, ν, S). We say that the
extension given by a factor map π : X −→ Y is relatively uniquely ergodic (RUE)
over ν if, for any T -invariant probability measure λ on X such that π∗λ = ν, we
have λ = µ.

Stable extensions

In [?], Robinson gives three notions of « stable extensions », which we recall here.

Definition 1.3.19. Let X := (X,A , µ, T ) and Y := (Y,B, ν, S) be dynamical
systems. Consider an extension given by a factor map π : X −→ Y. We say that
X

π−→ Y is:
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• stable if X is ergodic and for every system Z := (Z,C , ρ, R) such that
X ⊗ Z is ergodic, the extension X ⊗ Z

π×Id−→ Y ⊗ Z is relatively uniquely
ergodic over ν ⊗ ρ.

• n-fold self-stable if Y is weakly mixing and the extension X⊗n
πn−→ Y⊗n

is relatively uniquely ergodic over ν⊗n. It is self-stable if it is n-fold self-
stable, for every n.

• weakly stable if X is ergodic and for every system Z and every ergodic
joining of X and Z for which Y and Z are independent, X and Z are also
independent.

Remarks. The main difference between weak stability and the first two defini-
tions is that weak stability is an isomorphism invariant (see [?, Proposition 3.12]),
while stability and self-stability depend on the model we consider.

Then, the distinction between stability and confinement lies mainly in the er-
godicity and weak mixing assumptions in the definitions of stability. We discuss
this more precisely in the next proposition.

Proposition 1.3.20. Consider an extension given by a factor map π : X −→ Y
and let n ≥ 1. We have the following relations:

(i) X
π−→ Y is n-fold self-stable if and only if Y is weakly mixing, and X

π−→
Y is RUE and confined,

(ii) if Y is ergodic and X
π−→ Y is confined, then X

π−→ Y is weakly stable.

Since we have [?, Proposition 3.13.], we also get

(iii) If Y is ergodic and X
π−→ Y is RUE and confined, then X

π−→ Y is stable.

Using those results, we can answer some questions left open by Robinson (see
[?, §3.3]) on stable extensions:

1. 2-fold self-stability implies self-stability,

2. and self-stability implies stability.

Proving those result does not require the use of confined extensions, we could also
have proven them directly using similar arguments to those used in Proposition ??.
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Proof of Proposition ??. In this proof we say that an extension satisfying Defini-
tion ?? (iii) is n-confined.

We will use basic results from [?]:

• [?, Lemma 3.7, (v)] tells us that an n-fold self-stable extension is relatively
uniquely ergodic.

• [?, Proposition 3.13] tells us that a relatively uniquely ergodic and weakly
stable extension is stable.

Let us prove (i): assume that X
π−→ Y is n-fold self-stable. By definition, Y

is weakly mixing. Then, [?, Lemma 3.7, (v)] gives the relative unique ergodicity.
Finally, the n-fold self stability tells us that the only T n-invariant measure which
projects to ν⊗n is the product measure µ⊗n, which means the extension X

π−→
Y is n-confined, and therefore confined. Conversely, assume that Y is weakly
mixing and that X

π−→ Y is confined and RUE. We then know that X
π−→ Y

is n-confined. To prove the n-fold self-stability: let λ ∈ P(Xn) be T n-invariant
and assume it projects to ν⊗n. Using the RUE property of X

π−→ Y, we get that
λ is a n-fold joining of µ. Then the n-confinement of X

π−→ Y implies that it is
the product joining, that is λ = µ⊗n.

We then prove (ii). Since Y is ergodic and X
π−→ Y confined, using Proposi-

tion ??, we get that X is ergodic. Then (ii) follows from the definitions.
We get (iii) by combining (ii) and [?, Proposition 3.13].

GW-property

The GW-property was introduced by Glasner and Weiss in [?] and named so by
Robinson in [?]. Robinson defines this property on topological models: that is, X
and Y are compact metric spaces and T , S and π are continuous maps. However,
it will be more convenient here to define it in the more general setup of standard
Borel spaces.

Let X := (X,A , µ, T ), Y := (Y,B, ν, S) where, as in the rest of this chapter,
(X,A ) and (Y,B) are standard Borel spaces. Let π : X −→ Y be a measurable
factor map, that is, π : (X,A ) −→ (Y,B) is a Borel map. We define Mν as the
set of probability measures on X which project to ν under π:

Mν := {γ ∈P(X) |π∗γ = ν}.

Since P(X) equipped with the weak* topology, induced by bounded continuous
(for a Polish topology onX) functions, is a Polish space (see [?, Theorem 17.23]),
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Mν is a standard Borel space. Moreover, it is T∗-invariant, and therefore we can
consider the measurable action of T∗ on Mν . Note that µ is a fixed point for T∗,
and therefore δµ is a T∗-invariant measure on Mν .

Definition 1.3.21. Using the notations introduced above, we say that X
π−→ Y

has the GW-property if (Mν , δµ, T∗) is uniquely ergodic, i.e. δµ is the only T∗-
invariant measure on Mν .

Proposition 1.3.22. The extension X
π−→ Y has the GW-property if and only if

it is relatively uniquely ergodic and confined.

This equivalence relies on the canonical relation between quasifactors (see [?,
Chapter 8]) and joinings. Similarly to the systems on Mν we consider here, a
quasifactor of a system X := (X,A , µ, T ) is a dynamical system of the form
(P(X), ρ, T∗) where ρ is T∗-invariant and

∫
P(X)

µ̃ dρ(µ̃) = µ.

Proof. The first part of the proof will be similar to [?, Proposition 2.1]. Assume
that X

π−→ Y has the GW-property. Let Z := (Z,C , ρ, R) be a dynamical system
and λ a measure which gives us a joining X×λZ where Y and Z are independent.
We decompose λ over Z:

λ =

∫
Z

µz ⊗ δz dρ(z).

We set ϕ : z 7→ µz and γ := ϕ∗ρ ∈P(P(X)). Since Y and Z are independent,
we have

ν ⊗ ρ = (π × Id)∗λ =

∫
Z

π∗µz ⊗ δz dρ(z),

and it follows that π∗µz = ν, ρ-almost surely. So γ is supported on Mν . Moreover,
using the invariance of λ and ρ, we have∫
Z

T∗µz⊗δRz dρ(z) = (T ×R)∗λ = λ =

∫
Z

µz⊗δz dρ(z) =

∫
Z

µRz⊗δRz dρ(z),

so ϕ satisfies the equivariance condition: µRz = T∗µz ρ-almost surely. Therefore,
γ is T∗-invariant. Finally, the GW-property implies γ = δµ, which in turn yields
µz = µ, ρ-almost surely. This shows that λ = µ⊗ ρ, so the extension is confined.

We now prove that X
π−→ Y is RUE: take a T -invariant measure λ such that

π∗λ = ν. Then λ ∈Mν and it is a fixed point of T∗, therefore, δλ is a T∗-invariant
measure, so, by the GW property, δλ = δµ. Therefore, λ = µ, and this proves that
the extension is RUE.
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Conversely, assume that X
π−→ Y is confined and RUE. Let ρ be a T∗-

invariant measure on Mν , and define the associated system: Z := (Mν , ρ, T∗).
We can then use the induced joining

λ :=

∫
Mν

µ̃⊗ δµ̃ dρ(µ̃) ∈P(X ×Mν).

It projects to ρ on Mν . Let us focus on the projection on X:
∫
µ̃ dρ(µ̃). Since ρ

is supported on Mν and T∗-invariant, this measure projects to ν on Y , and is T -
invariant. Now, using our relative unique ergodicity assumption, this means that∫
µ̃ dρ(µ̃) = µ. In conclusion, λ is a joining of X and Z. Moreover, we have the

computation

(π × IdZ)∗λ =

∫
Mν

π∗µ̃⊗ δµ̃ dρ(µ̃)

=

∫
Mν

ν ⊗ δµ̃ dρ(µ̃) = ν ⊗ ρ.

Then, since X
π−→ Y is confined, it follows that λ = µ⊗ρ. Given the construction

of λ, it means that ρ-almost surely, µ̃ = µ, which we can write as ρ = δµ.

Relatively uniquely ergodic models of confined extensions

For a given extension A → B on X := (X,A , µ, T ), we can find extensions
defined on other dynamical systems that are isomorphic to A → B. Moreover,
as previously mentioned, once the system X is chosen, there exist a system Y :=
(Y,C , ν, S) and a factor map π : X −→ Y such that B = π−1(C ) mod µ, but
π and Y are not unique. Once X, Y and π are fixed, we say that X

π−→ Y is a
model of A → B. When studying properties invariant under isomorphism like
confinement or standardness, the exact choice of the model of A → B has no
impact on our results.

However, stability and the GW-property are not invariant under isomorphism,
and are therefore specific to one model. The purpose of this section is to determine
which of the differences between confinement and stability or the GW-property
are solely due to a choice of the model. We state our result in the following theo-
rem, where we see, in particular, that, up to the choice of the model, confinement
and the GW-property are equivalent.

Theorem 1.3.23. Let X
π−→ Y be an extension and let n ≥ 1. We have
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(i) Y is weakly mixing and X
π−→ Y is confined if and only if X

π−→ Y has a
n-fold self-stable model.

(ii) If Y is ergodic and X
π−→ Y is confined, then X

π−→ Y has a stable
model.

(iii) X
π−→ Y is confined if and only if it has a model which has the GW-

property.

The key assumption on the choice of a model that emerges in Propositions ??
and ?? is relative unique ergodicity. Therefore, we want to show that

Proposition 1.3.24. A confined extension is isomorphic to a relatively uniquely
ergodic extension.

We recall the definition of a relatively ergodic extension:

Definition 1.3.25. Let X := (X,A , µ, T ). Denote IX := {A ∈ A |T−1A =
A mod µ}. An extension A → B on X := (X,A , µ, T ) is relatively ergodic if
IX ⊂ B mod µ. Equivalently, if the extension is given by a factor map π : X −→
Y, it is relatively ergodic if π−1IY = IX mod µ.

Our proof of Proposition ?? will be done in two steps: first we show in Lemma
?? that confined extensions are relatively ergodic, and then we show in Lemma ??
that a relatively ergodic extension admits a relatively uniquely ergodic model.

Lemma 1.3.26. A confined extension is relatively ergodic.

Proof. Let X := (X,A , µ, T ) be a dynamical system, A → B a confined exten-
sion and denote IX the invariant factor of X. We aim to show that IX ⊂ B mod
µ. Set IB := IX ∩B. Since T acts as the identity map on IX , the extension
IX → IB admits a super-innovation (see Proposition ??): there exist a probabil-
ity space (Ω,E ,P), a measure preserving map p : Ω −→ X/IX

and a σ-algebra
C ⊂ E independent of p−1(IB) such that p−1(IX) ⊂ p−1(IB) ∨ C . We now
want to use C to get a super-innovation for the extension B ∨IX → B.

Viewing Ω := (Ω,E ,P, Id) as a dynamical system, we can set Z := (Z,D , ρ, R)
to be the relative product of X and Ω over IX . Let ĨB, ĨX and C̃ be the respec-
tive copies of p−1(IB), p−1(IX) and C on Z obtained by taking the converse
image of the projection on Ω. Also, denote B̄, ĪB and ĪX the copies of B, IB
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and IX obtained using the projection map on X . Because IB ⊂ IX , we must
have ĪB = ĨB mod ρ and ĪX = ĨX mod ρ. We then get, on Z:

B̄ ∨ ĪX ⊂ B̄ ∨ C̃ mod ρ. (1.3)

Moreover, C̃ is independent of B̄: let C be a C̃ -measurable random variable,
and consider E[C | B̄]. Since B̄ is an invariant σ-algebra, we have

E[C | B̄] ◦R = E[C ◦R | B̄] = E[C | B̄],

because, by construction,C isR-invariant. Therefore, E[C | B̄] is ĪB-measurable,
which means that E[C | B̄] = E[C | ĪB] = E[C], so C is independent of B̄ under
ρ. Combining this with (??) shows that the extension B ∨ IX → B defined on
X admits a super-innovation. However, by Proposition ??, it is also confined, so
Proposition ?? implies that it is a trivial extension: B ∨IX = B mod µ and that
yields IX ⊂ B mod µ.

We continue our proof of Proposition ?? with the following lemma:

Lemma 1.3.27. Any relatively ergodic extension A → B has a relatively uniquely
ergodic model.

The case when B (and therefore A ) is ergodic is already known: it is a result
from Weiss ([?]). Weiss’s result gives a stronger conclusion than ours since it gives
a topological RUE model. In the non-ergodic case, we only get a model X

π−→ Y
where X and Y are standard Borel spaces and π is a Borel map. One could try to
improve this result and build a model where X and Y are topological systems by
making use of Weiss and Downarowicz’s result from [?]. By improving the result
from [?], one might also be able to get a model where π is continuous.

Proof. Let A → B be a relatively ergodic extension on X := (X,A , µ, T ). Start
by taking a system Y := (Y,C , ν, S) and a factor map π : X −→ Y such that
B = σ(π) mod µ. In that case, the fact that X

π−→ Y is relatively ergodic means
that IX = π−1(IY ) mod µ. Since (X,A ) and (Y,C ) are standard Borel spaces,
we can assume that X and Y are respectively Borel subsets of some compact
spaces X̃ and Ỹ . Denote TX and TY the induced topologies on X and Y and
note that they satisfy A = σ(TX) and C = σ(TY ).

We recall that a point x ∈ X̃ is generic (for T ) if there exists an invariant
measure ΦX(x) such that for every continuous bounded function f : X̃ → R, we
have

1

n

n−1∑
k=0

f ◦ T k(x) −→
n→∞

∫
X̃

fdΦX(x). (1.4)
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Using Birkhoff’s ergodic theorem and the fact that the space of continuous func-
tions on X̃ is separable, we know that on X and Y, almost every point is generic
for an ergodic measure. Therefore, there are invariant measurable subsets Y0 ⊂ Y
and X0 ⊂ π−1Y0 ⊂ X of full measure on which all points are generic for an
ergodic measure and for every x ∈ X0, π ◦ T (x) = S ◦ π(x). Up to mak-
ing X0 slightly smaller, we can define the map ΦX : X0 −→ P(X) that sends
each point to the ergodic measure for which it is generic and for all x ∈ X0,
ΦX(x)(X) = 1. Finally, define ΦX on X\X0 as any measurable map, which
implies that ΦX : X −→ P(X) is measurable. We define ΦY : Y −→ P(Y )
similarly.

Those maps are measurable and generate the respective invariant factor σ-
algebras of X and Y. Indeed, let us show that σ(ΦX) = IX mod µ: it is clear
that σ(ΦX) ⊂ IX mod µ, so we need to show the converse. This will follow from
the equality, for any bounded measurable function f :∫

X

fdΦX(x) = lim
n→∞

1

n

n−1∑
k=0

f◦T kx = E[f |IX ](x), for µ-almost every x. (1.5)

We get (??) by first showing it for continuous functions, and then extending it to
all bounded measurable functions. Once that is established, take f a T -invariant
function and use (??) to get∫

X

fdΦX(x) = E[f |IX ](x) = f(x), for µ-almost every x.

This shows that f is ΦX-measurable, therefore completing the proof that σ(ΦX) =
IX mod µ.

Combining that with the relative ergodicity of A → B, we have

σ(ΦX) = IX = π−1(IY ) = π−1σ(ΦY ) = σ(ΦY ◦ π) mod µ.

Moreover, the laws of ΦX and ΦY , which we denote ξX and ξY respectively, give
the ergodic decompositions of µ and ν. Therefore, there exists a measurable map
Γ : (P(Y ), ξY ) −→ (P(X), ξX) such that

ΦX = Γ ◦ ΦY ◦ π µ-almost surely.

Moreover, it is easy to verify that ΦY ◦ π = π∗ ◦ ΦX on X0. Finally, it yields that

Γ ◦ π∗ = IdP(X) ξX-almost surely.
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From that, we can use [?, Corollary 15.2] to deduce that there are two measurable
sets ΣX ⊂ P(X) and ΣY ⊂ P(Y ) of full measure (for ξX and ξY respectively)
such that π∗ : ΣX −→ ΣY is a measurable bijection (with π−1

∗ = Γ). Finally, set
X1 := Φ−1

X (ΣX) ∩X0 and Y1 := Φ−1
Y (ΣY ) ∩ Y0 and define X1 (resp. Y1) as the

restriction of X to X1 (resp. Y to Y1). This is well-defined because X1 and Y1

are invariant measurable sets that verify π(X1) ⊂ Y1. We know that (X1,A1) :=
(X1,A ∩X1) and (Y1,C1) := (Y1,C ∩Y1) are still standard Borel spaces because
they are the restriction of a standard Borel space to a measurable subset.

Define ΦX1 : X1 −→ P(X1) ∪ {0} by restricting ΦX(x) to X1. This is
well-defined because, since ΦX(x) is ergodic and X1 is invariant, the restriction
of ΦX(x) to X1 is either a probability measure or the null measure.

The extension X1
π1−→ Y1 gives us the desired model. Let λ be a T -invariant

probability measure on X1 such that π∗λ = ν1 and set χ := (ΦX1)∗λ. First,
consider λ̃(·) := λ(· ∩ X1) and integrate (??) over X with respect to λ: for any
bounded TX-continuous f , using the dominated convergence theorem, we get∫
X1

∫
X

fdΦX(x) dλ(x) = lim
n→∞

∫
X1

1

n

n−1∑
i=0

f ◦ T i(x)dλ(x) =

∫
X1

fdλ =

∫
X

fλ̃,

so
λ̃ =

∫
X1

ΦX(x)dλ(x).

So ΦX(x)(X1) = 1 λ-almost surely and

λ =

∫
X1

ΦX1(x)dλ(x) =

∫
ρ dχ(ρ).

By applying π∗, we get

ν1 =

∫
π∗ρ dχ(ρ),

which yields (π∗)∗χ = ξY1 , by uniqueness of the ergodic decomposition of ν1.
Then, since π∗ is a bijection, we get

χ = (π−1
∗ )∗ξY1 = ξX1 ,

and finally

λ =

∫
ρ dχ(ρ) =

∫
ρ dξX1 = µ1.
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1.3.5 Compact extensions: a criterion for confinement

In this section, we prove the confinement criterion presented in Theorem ?? and
give applications of this criterion.

A criterion for confinement of compact extensions

We recall our criterion from Theorem ??. For a compact extension X := Y nϕ

G −→ Y, we want to show that the following are equivalent:

(i) The extension X
π−→ Y is confined;

(ii) The product extension X⊗X
π×π−→ Y ⊗Y is relatively ergodic;

(iii) Call
∫
ρω dP(ω) the ergodic decomposition of ν ⊗ ν; for P-almost every ω,

the measure ρω ⊗mG ⊗mG is ergodic under (S × S)ϕ×ϕ.

As we see in the proof below, the implications (i)⇒ (ii) and (ii)⇒ (iii) are gen-
eral results for which the extension does not need to be compact. However, the
implication (iii) ⇒ (i) uses the compactness of the extension, because the main
ingredient in our proof is Furstenberg’s well known relative unique ergodicity re-
sult:

Lemma 1.3.28 (Furstenberg [?]). Let X := (Y × G, ν ⊗mG, Sϕ) be the system
introduced in Definition ?? and π : (y, g) 7→ y. If X is ergodic, then, for any
Sϕ-invariant measure λ on Y ×G which verifies π∗λ = ν, we have λ = ν ⊗mG.

See [?, Theorem 3.30] for a proof of the lemma.

Proof of Theorem ??. (i)⇒ (ii). Assume that X
π−→ Y is a confined compact

extension. From the definition (iii) of confined extensions, we know that the prod-
uct extension X⊗X

π×π−→ Y ⊗Y is also confined. So it is relatively ergodic (see
Lemma ??).

(ii)⇒ (iii). It follows from the lemma (applied to Y 2 and G2 instead of Y and
G), which is true for any extension given by a Rokhlin cocycle:

Lemma 1.3.29. Let Y := (Y,B, ν, S) be a dynamical system, (Z, ρ) a standard
Borel space and R• : Y −→ Aut(Z, ρ) a measurable cocycle. Consider the
Rokhlin extension X defined on (X,µ) := (Y × Z, ν ⊗ ρ) by the skew product
transformation

T : (y, z) 7→ (Sy,Ry(z)).
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Consider
ν =

∫
ν̃ dχν(ν̃),

the ergodic decomposition of ν. If X
π−→ Y is relatively ergodic, then the ergodic

decomposition of ν ⊗ ρ is

ν ⊗ ρ =

∫
ν̃ ⊗ ρ dχν(ν̃).

Proof. Let IT be the σ-algebra of T -invariant sets on Y ×Z and IS the σ-algebra
of S-invariant sets on Y . By assumption, π−1IS = IT mod µ, so if we take
f : Y −→ R and h : Z −→ R bounded measurable functions, the independence
of Y and Z gives

Eν⊗ρ[f(y)h(z) |IT ] = Eν⊗ρ[Eν⊗ρ[f(y)h(z) |σ(Y )] |IT ]

= Eν⊗ρ[f(y)Eν⊗ρ[h(z)] |IT ] = Eν [f(y) |IS] · Eρ[h(z)].

Since the ergodic decomposition is obtained by decomposing over the factor of
invariant sets, this equality implies that∫

ν̃ ⊗ ρ dχν(ν̃),

gives the ergodic decomposition of ν ⊗ ρ.

(iii)⇒ (i). Assume that the condition (iii) holds. Let λ be a self-joining of X for
which the copies of Y are independent, i.e. λ projects to ν ⊗ ν on Y × Y . We
consider the ergodic decomposition of λ

λ =

∫
λω dP(ω).

Then, since λ projects onto ν ⊗ ν, we know that ρω := (π × π)∗λω gives an
ergodic decomposition of ν ⊗ ν. Therefore, by the uniqueness of the ergodic
decomposition and our hypothesis, we get that, for P-almost every ω, the measure
ρω ⊗mG×G = ρω ⊗mG ⊗mG is ergodic. Moreover, we can see (X × X, ρω ⊗
mG×G, T × T ) as a compact extension of (Y × Y, ρω, S × S) via the co-cycle
ψ : (y, y′) 7→ (ϕ(y), ϕ(y′)) taking values in the compact group G × G. Since
ρω ⊗mG×G is ergodic, Lemma ?? tells us that λω = ρω ⊗mG×G. Finally:

λ =

∫
ρω dP(ω)⊗mG×G = ν ⊗ ν ⊗mG ⊗mG = µ⊗ µ.
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A non-confined ergodic compact extension

We give here a simple example of non-confined ergodic compact extension: take
Y := (Y,B, ν, S) a weakly mixing dynamical system, α an irrationnal number
and the constant cocycle

ϕ : Y −→ T
y 7→ α

Then the associated compact extension (Y × T, ν ⊗mT, Sϕ) defined by

Sϕ : (y, z) 7→ (Sy, z + α)

is ergodic. Also, because the cocycle is constant, the extension is of product type,
and therefore it is not confined.

A non-weakly mixing confined compact extension

Let us now turn our attention to an example illustrating our confinement criterion
in the non-weakly mixing case. We consider the system Xα on the two dimen-
sional torus given by the following Anzai product:

Tα : (x, y) 7→ (x+ α, y + x),

as an extension of the system Yα given by the rotation

Sα : x 7→ x+ α,

with α ∈ R. We equip both systems with the Lebesgue measure.

Proposition 1.3.30. The system Xα is not weakly mixing but the extension Xα
π−→

Yα is compact and confined.

Proof of Proposition ?? using Theorem ??. We know that Xα is not weakly mix-
ing because Yα is not. The extension Xα

π−→ Yα is compact because T is com-
pact. Let us show that it is confined.

Denote by ν the Lebesgue measure on the torus T and by µ := ν ⊗ ν the
Lebesgue measure on the 2-dimensional torus, T2. For ω ∈ T, define µω :=∫
δx⊗δx+ωdν(x). The measures (µω)ω∈T give an ergodic decomposition of ν⊗ν:

ν ⊗ ν =

∫
µωdν(ω).
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In light of Theorem ??, we need to show that, for ν-almost every ω, the system
(T4, µω⊗ν⊗ν, Tα×Tα) is ergodic. This is isomorphic to the system on (T3, ν⊗
ν ⊗ ν) given by

(x, y1, y2) 7→ (x+ α, y1 + x, y2 + x+ ω), (1.6)

which is a compact extension of Yα via the cocycle

ϕ : x 7→ (x, x+ ω).

It is known (see [?, Theorem 3]) that this yields a non-ergodic system if and only
if there exist (n1, n2) ∈ Z\{(0, 0)} and a measurable map f : T −→ U such that

e2iπn1xe2iπn2(x+ω) = f(x+ α)/f(x) for ν-almost all x.

By considering the Fourier series of such a function f , we see that this is only
possible if there is k ∈ Z such that n2ω − kα ∈ Z.

Therefore, the system given by (??) is ergodic except for countably many
ω ∈ T. Since ν is non-atomic, we conclude that for ν-almost every ω, the system
(T4, µω⊗ν⊗ν, Tα×Tα) is ergodic, and, from Theorem ??, we know that Xα

π−→
Yα is confined.

Let us add the following result regarding this extension:

Definition 1.3.31. A dynamical system X := (X,A , µ, T ) is rigid if there exists
a sequence (nk)k≥0 that goes to ∞ such that, for every measurable set A ⊂ X ,
we have

lim
k→∞

µ(T nkA∆A) = 0.

For such a sequence, we say that X is (nk)-rigid.

Proposition 1.3.32. The factor Yα is rigid but the extension Xα is not.

It is known that Yα is rigid as an irrational rotation. The fact that Xα is not
rigid follows easily from [?, Theorem 6].

1.4 T, T−1 transformations
Let Y := (Y,B, ν, S) be a Bernoulli shift with Y = {−1, 1}Z, ν = 1

2
(δ−1 +δ1)⊗Z

and S the shift on Y . Let X := (X,A , µ, T ) be a dynamical system. We introduce
the system Y n X defined on (Y ×X, ν ⊗ µ) by the transformation

S n T : Y ×X −→ Y ×X
(y, x) 7→ (Sy, T y(0)x)

.
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We call this map a T, T−1 transformation.
Most of our approach in Section ?? is based on the arguments given in [?],

with the necessary adjustments to apply them to T, T−1 transformations and con-
fined extensions. Then in Section ??, we use new arguments to finally get a non-
standard extension.

1.4.1 Confinement result for T, T−1 transformations

Let X := (X,A , µ, T ) be a dynamical system. In this section, we will prove that

Theorem 1.4.1. If T 2 acts ergodically on (X,A , µ), then π : Y n X −→ Y is a
confined extension.

As a consequence, we will get

Corollary 1.4.1.1. If T is weakly mixing, then π : Y n X −→ Y is confined but
not compact.

Since all the confined extensions we built previously were compact, this gives
us new examples.

Ergodic properties of the cocycle

We will prove the theorem using the framework proposed in [?, Section 6]. To
do so, we first remark that the transformation (S n T ) × (S n T ) can easily be
described using a cocycle. To see that, we define the Z2-action on X ×X by

T(k1,k2)(x1, x2) := (T k1x1, T
k2x2),

and then (S n T )× (S n T ) is isomorphic to

S2,ϕ : Y 2 ×X2 −→ Y 2 ×X2

(y, x) 7→ (S2(y), Tϕ(y)(x))

where S2 := S × S and ϕ is the following cocycle

ϕ : Y 2 −→ Z2

(y1, y2) 7→ (y1(0), y2(0))
.

We then have to study the ergodic properties of the associated transformation

S̄2,ϕ : Y 2 × Z2 −→ Y 2 × Z2

(y, k) 7−→ (S2(y), k + ϕ(y))
.
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We will also note ν2 := ν ⊗ ν.
On Z2, we introduce Z0 := {k ∈ Z2 | k1 − k2 is even} and Z1 := {k ∈

Z2 | k1 − k2 is odd}. We point out that, for every y ∈ Y 2, we have

Z0 + ϕ(y) = Z0 and Z1 + ϕ(y) = Z1. (1.7)

Finally, for any subset F ⊂ Z2, we denote by λF the counting measure on F . We
then have the following result, which can be viewed as a two dimensional version
of the result in [?, §12]:

Lemma 1.4.2. The ergodic components of (Y 2×Z2, S̄2,ϕ, ν2⊗ λZ2) are ν2⊗ λZ0

and ν2 ⊗ λZ1 .

Proof. We need to show that ν2 ⊗ λZ0 and ν2 ⊗ λZ1 are ergodic. Let us consider
the case of ν2 ⊗ λZ0 .

We could adapt the arguments in [?, §12] to a 2-dimensional setting. We can
also use the following map:

ψ : Y 2 × Z0 −→ Z0
Z

(y, k) 7−→ (k + ϕn(y))n∈Z
,

with

ϕn(y) :=


0 if n = 0∑n−1

j=0 ϕ(Sj2(y)) if n > 0

−
∑−1

j=n ϕ(Sj2(y)) if n < 0

.

We chose the sequence (ϕn)n≥0 because when we iterate S̄2,ϕ we get

∀n ∈ Z, ∀(y, k) ∈ Y × Z0, S̄
n
2,ϕ(y, k) = (Sn2 y, k + ϕn(y)).

Therefore, the map ψ sends S̄2,ϕ onto the shift on ZZ
0 . Moreover, ψ∗(ν2 ⊗ λZ0)

is the shift-invariant measure on ZZ
0 obtained by applying the symmetric random

walk on the counting measure λZ0 . Therefore our system is isomorphic to the
infinite measure preserving system associated to the symmetric random walk on
Z0, which is known to be a conservative and ergodic system (see [?, Theorem
4.5.3]).

Corollary 1.4.2.1. Define the map

H : Y 2 −→ Y 2

y 7−→ S
N(y)
2 (y)

,

where N is the first return time to (0, 0) of the symmetric random walk associated
to (ϕn)n≥0. Then H is well-defined, measure preserving and ergodic on (Y 2, ν2).
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Proof. The map H is simply isomorphic to the map induced by the system (Y 2×
Z0, ν2 ⊗ λZ0 , S̄2,ϕ) on Y 2 × {(0, 0)}. Since we have seen that this system is
conservative and ergodic, we get our corollary.

Actually, a closer study of H would show that it is isomorphic to a Bernoulli
shift, but this ergodicity result will be enough for our purposes.

The sequence (ϕn)n≥0 and the return time N will be of use later because, as
with S̄2,ϕ, when we iterate S2,ϕ we get

∀n ∈ Z, ∀(y, x) ∈ Y ×X, Sn2,ϕ(y, x) = (Sn2 y, T
ϕn(y)x).

And when we iterate precisely N times, the action on X reduces to the identity:

∀(y, x) ∈ Y ×X, SN(y)
2,ϕ (y, x) = (S

N(y)
2 y, x).

Confinement for T, T−1 transformations

Using our previous section and the arguments taken from [?], we now prove The-
orem ??.

Lemańczyk and Lesigne gave a condition (see [?, Propostion 8]) for ergodic
cocycles to yield stable extensions. Our proof here is a straightforward adaptation
that takes into account the lack of ergodicity of the cocycle and shows that the
extension is confined. We give a detailed proof for the sake of completeness.

Proof of Theorem ??. Let λ be a (SnT )×(SnT )-invariant self-joining of YnX
whose projection on Y × Y is the product measure ν2 = ν ⊗ ν. As we remarked
previously λ being (S n T ) × (S n T )-invariant is, up to a permutation of the
coordinates, equivalent to λ being S2,ϕ-invariant.

Let us decompose λ over the projection on Y 2:

λ =

∫
Y 2

δy ⊗ µy dν2(y).

Since λ is S2,ϕ-invariant, we get µS2(y) = (Tϕ(y))∗µy. Hence the map

F : (y, k) 7→ (T−1
k )∗µy

is S̄2,ϕ-invariant. So, by Lemma ??, it is almost surely constant on Y 2 × Z0 and
Y 2 × Z1. In particular, for ν2-almost every y, we have µy = F (y, 0) = γ0, where
γ0 is a probability measure on X2. Therefore λ = ν2 ⊗ γ0. Moreover, since, for
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almost every y, F (y, ·) is constant on Z0, by taking k = (2, 0) and k = (0, 0), we
get

((T 2 × Id)−1)∗γ0 = γ0,

which we can also write as

(T 2 × Id)∗γ0 = γ0.

Since both marginals of γ0 are µ, it implies that γ0 is a joining of (X,µ, T 2) and
(X,µ, Id). However, all ergodic transformations are disjoint from the identity
map, so γ0 is a product measure, and more precisely γ0 = µ⊗ µ. This means that

λ = ν ⊗ ν ⊗ µ⊗ µ.

Remark 1.4.3. The ergodicity assumption on T 2 is necessary to get the result of
the theorem. Indeed, for example, if T 2 = Id we get T = T−1, and then S n T =
S × T cannot be confined, unless X is trivial (see Corollary ??). In fact, for any
transformation for which T 2 is not ergodic, the T, T−1 extension is not confined.
Indeed, take f a non-trivial T 2-invariant function on X . Set ξ := (f, f ◦ T ) and
ξ̃(y, x) := ξ(x). Since f ◦ T 2 = f , we also get that f ◦ T−1 = f ◦ T . Using this,
we check that

ξ̃ ◦ S n T (y, x) = (f(T y(0)x), f(T y(0)+1x)) = (f(Tx), f(x)),

is ξ̃-measurable, meaning that σ(ξ̃) is invariant under the T, T−1 transformation.
But, by construction, it is independent of the Y coordinate, which means (using
again Corollary ??) that the extension is not confined.

Our additional ergodicity assumption on T 2 is here to compensate the lack of
ergodicity from the cocycle that arises from the fact that the random walk set by ϕ
is not ergodic. Indeed, if we modify Y and take random variables uniformly dis-
tributed on {−1, 0, 1}, the random walk it generates on Z2 is ergodic, the cocycle
is ergodic as well and we get the result of the theorem by only assuming that T is
ergodic. This is the setup to which Lemańczyk and Lesigne applied their stability
criterion.

Relative weak mixing of T, T−1 transformations

In this section, we prove Corollary ?? using the notion of relative weak mixing
(see [?]).
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Definition 1.4.4. Let U and V be dynamical systems and α : U −→ V a factor
map. The extension U

α−→ V is relatively weakly mixing if the extension

U⊗V U −→ V

is relatively ergodic.

It is well-known that relatively weakly mixing extensions cannot be compact
(see [?, Chapter 6, Part 4]). It can also be seen from the construction we give in
the proof of Lemma ??.

Proof of Corollary ??. Assume that T is weakly mixing. Therefore (T ×T )2 acts
ergodically on (X ×X,A ⊗A , µ⊗ µ). One can check that the system, that we
note Y n (X⊗X), given on (Y ×X ×X, ν ⊗ µ⊗ µ) by the transformation

S n (T × T ) : Y ×X ×X −→ Y ×X ×X
(y, x, x′) 7→ (Sy, T y(0)x, T y(0)x′)

,

is the relatively independent product of Y n X by itself over Y. Using Theorem
??, we know that Y n (X ⊗ X) −→ Y is confined, and, by Lemma ??, it is
relatively ergodic. It follows that Y n X −→ Y is relatively weakly mixing, and
therefore not compact.

1.4.2 A non-standard T, T−1 extension

The goal of this section is to show the following result:

Theorem 1.4.5. If X has the 4-fold PID property and T 2 acts ergodically on
(X,A , µ), then the extension Y n X

π−→ Y is not standard.

We introduced the PID property in Definition ??. It is known that there are
systems satisfying this property. For example, it is shown in [?] that all finite rank
mixing transformations have the PID property. We will use Ryzhikov’s result
from [?, §1, Section 2] which states that if X has the 4-fold PID property, any
joining λ of X with any two systems Z1 and Z2 that is pairwise independent has
to be the product joining. In fact, we will only need a simplified version, which
we write here as a consequence of Lemma ??:

Lemma 1.4.6. Assume that X has the 4-fold PID property. Let Z be any dynami-
cal system. Consider a joining X1 ×X2 × Z where X1 and X2 are copies of X.
If this joining is pairwise independent, then it is the product joining.
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Proof. Let λ be a pairwise independent joining on X × X × Z. Take W the
system given by the relatively independent product of λ over Z, and denote X′1,
X′2, X′′1 and X′′2 the copies of X on W. Using our assumption on λ, we know
that X′i and X′′j are relatively independent over Z and are both independent of
Z, so X′i and X′′j are independent. Therefore the quadruplet (X′1,X

′
2,X

′′
1,X

′′
2) is

pairwise independent. Next, the 4-fold PID property tells us that this quadruplet is
mutually independent. Therefore, X′1∨X′2 and X′′1∨X′′2 are independent. Finally,
using Lemma ?? once more, we know that X1∨X2 and Z are independent, which
implies that λ is the product joining.

Proof of Theorem ??. Let us take an extension Ỹ
α−→ Y. Consider the system

W := Ỹ n X = (Ỹ ×X, ν̃ ⊗ µ,Q) with Q being the map

Q : (ỹ, x) 7→ (S̃ỹ, T y(0)x),

using the notation y := α(ỹ). One can check that W is the relatively independent
product of YnX and Ỹ over Y. Following Remark ??, we need to show that the
extension Ỹ n X

π̃−→ Ỹ admits no super-innovation.
Assume that W

π̃−→ Ỹ has a super-innovation. Therefore there is a system Z
and a factor map β : Ỹ ⊗ Z −→W such that π̃ ◦ β(ỹ, z) = ỹ. We then use Z the
get a self-joining of W: we start with the product space Ỹ1⊗ Ỹ2⊗Z and we get
two copies of W by considering

β1 : (ỹ1, ỹ2, z) 7→ β(ỹ1, z) and β2 : (ỹ1, ỹ2, z) 7→ β(ỹ2, z).

Formally, we consider the joining ρ ∈ P(Ỹ × X × Ỹ × X) defined as the law
of the factor map (β1, β2). Our goal is to show that ρ is the product joining. We
represent the construction of ρ in the following diagram:

To make our notation explicit, we define pX1 , pX2 , pỸ1
and pỸ2

as the coordi-
nate projections on Ỹ ×X × Ỹ ×X . In the joining given by ρ, we have the two
following properties:
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(i) the copies of Ỹ, generated by pỸ1
and pỸ2

, are independent,

(ii) we have the additional independence: for i = 1, 2 we get that pXi
is inde-

pendent of (pỸ1
, pỸ2

).

Indeed, (i) follows from the independence of Z and Ỹ in the construction of ρ.
To get (ii) (with i = 1 for example), first note that, by construction, (pX1 , pỸ1

)
is independent of pỸ2

. Since pX1 and pỸ1
are independent, this yields that pX1 is

independent of (pỸ1
, pỸ2

), which gives us (ii).
For the rest of this proof, we switch the coordinates and view ρ as a measure

on Ỹ × Ỹ ×X ×X . We note a point on this space as (ỹ1, ỹ2, x1, x2) or (ỹ, x), for
short. Moreover, we use the notation y := α× α(ỹ), and this enables us to define
ϕ̃, ϕ̃n and Ñ as maps on Ỹ × Ỹ by setting

ϕ̃(ỹ) := ϕ(y), ϕ̃n(ỹ) = ϕn(y) and Ñ(ỹ) := N(y).

We also define N̂ on Ỹ × Ỹ ×X ×X by setting N̂(ỹ, x) := N(y). We now get
back to our proof.

From (ii), we know that each pXi
is independent of (pỸ1

, pỸ2
). Moreover,

from Theorem ??, we know that pX1 and pX2 are independent, so, under ρ, (pỸ1
, pỸ2

),
pX1 and pX2 are pairwise independent. We then want to use Lemma ?? to get
the mutual independence, but we do not have a transformation θ on (Ỹ × Ỹ , ν̃2)
such that ρ is (θ × T × T )-invariant. Therefore, our strategy below is, instead of
considering (pỸ1

, pỸ2
), to only consider the conditional law of (pX1 , pX2) given

(pỸ1
, pỸ2

), which takes its values in P(X×X). Our goal is then to find a suitable
transformation on P(X ×X) and an invariant joining on P(X ×X)×X ×X
in order to finally apply Lemma ??.

Since pỸ1
and pỸ2

are independent, ρ projects onto ν̃2 := ν̃ ⊗ ν̃ on Ỹ 2. We
decompose ρ over Ỹ 2:

ρ =

∫
Ỹ 2

δỹ ⊗ µỹ dν̃2(ỹ).

where each µỹ is a probability measure on X × X . We consider the following
action on P(X ×X) :

∀k ∈ Z2, θk : γ 7→ (Tk)∗γ = (T k1 × T k2)∗γ.

51



The fact that ρ is Q×Q-invariant yields:∫
Ỹ 2

δS̃2(ỹ) ⊗ µS̃2(ỹ) dν̃2(ỹ) =

∫
Ỹ 2

δỹ ⊗ µỹ dν̃2(ỹ)

= ρ = (Q×Q)∗ρ =

∫
Ỹ 2

δS̃2(ỹ) ⊗ (Tϕ̃(ỹ))∗µỹ dν̃2(ỹ),

where ϕ̃(ỹ) = ϕ(y) = (y1(0), y2(0)). So

µS̃2(ỹ) = (Tϕ̃(ỹ))∗µỹ = θϕ̃(ỹ)µỹ almost surely. (1.8)

We now set the map µ• : (ỹ, x) 7→ µỹ and consider the triplet (µ•, pX1 , pX2).
It is invariant under

(Q×Q)N̂ .

Indeed:

(pX1 , pX2) ◦ (Q×Q)N̂(ỹ,x)(ỹ, x) = TϕN(y)(y)(x) = x,

and, using (??):

µ• ◦ (Q×Q)N̂(ỹ,x)(ỹ, x) = θϕN(y)(y)µỹ = µỹ,

because ϕN(y)(y) = 0.
However, it follows from Corollary ?? that

(pY1 , pY2) := (α ◦ pỸ1
, α ◦ pỸ2

)

is ergodic under (Q×Q)N̂ . Therefore, since ergodic transformations are disjoint
from any identity map, the factor map (µ•, pX1 , pX2) is independent of (pY1 , pY2).
Set ρ̂ := (µ•, pX1 , pX2)∗ρ, which is a probability measure on P(X×X)×X×X .
Also consider ρ̂y the conditional law of (µ•, pX1 , pX2) given (pY1 , pY2) under ρ.
Using the Q×Q-invariance of ρ and (??), we get that∫
Y 2

δS2(y) ⊗ ρ̂S2(y) dν2(y) =

∫
Y 2

δy ⊗ ρ̂y dν2(y) = (pY1 , pY2 , µ•, pX1 , pX2)∗ρ

= (pY1 , pY2 , µ•, pX1 , pX2)∗(Q×Q)∗ρ =

∫
Y 2

δS2(y) ⊗ (θϕ(y) × Tϕ(y))∗ρ̂y dν2(y).

Therefore
ρ̂S2y = (θϕ(y) × Tϕ(y))∗ρ̂y almost surely.
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Moreover, because (µ•, pX1 , pX2) is independent of (pY1 , pY2), we know that, ν2-
almost surely, ρ̂y = ρ̂. This yields:

ρ̂ = (θϕ(y) × Tϕ(y))∗ρ̂ almost surely.

In particular, since ν2({ϕ(y) = (1, 1)}) > 0, we get that ρ̂ is (θ(1,1) × T × T )-
invariant.

Let us study ρ̂ more closely: using Theorem ??, we know that, under ρ, pX1

and pX2 are independent. Moreover, using the property (ii) introduced earlier, we
get that, for i = 1, 2, pXi

is independent of µ•. So ρ̂ is a pairwise independent
joining. We then use Ryzhikov’s result from [?] as expressed in Lemma ?? and
the 4-fold PID property of X to conclude that ρ̂ is the product joining.

Therefore, (pX1 , pX2) is independent of µ•. However, since µ• = µỹ is the
conditional law of (pX1 , pX2) given (pỸ1

, pỸ2
), the conditional law of (pX1 , pX2)

given µ• is also µ•. As a result, µ• is constant mod ρ, which means that (pX1 , pX2)
is independent of (pỸ1

, pỸ2
).

In conclusion:
ρ = ν̃ ⊗ µ⊗ ν̃ ⊗ µ.

Using the notation introduced in the beginning of this proof, this means that β1

and β2 are independent. Since Ỹ1⊗Ỹ2⊗Z is the 2-fold relative product of Ỹ⊗Z
over Z, Lemma ?? tells us that β is independent of Z. Finally, Lemma ?? yields
that β is Ỹ-measurable, implying that W must be Ỹ-measurable, which is absurd.
So W

π̃−→ Ỹ admits no super-innovation.

Given our work in Section ??, it would be natural to try to prove that Ỹ n X
π̃−→ Ỹ

has no super-innovation by showing that it is confined. This would show that
Y n X

π−→ Y has a stronger property: it would be hyper-confined, as we define
below

Definition 1.4.7. Let X := (X,A , µ, T ) be a dynamical system. We say that
A → B on X is hyper-confined if for every β : X̃ −→ X and for every extension
B̃ → B on X̃ such that A ⊥⊥B B̃, we have that A ∨ B̃ → B̃ is confined.

Equivalently, an extension given by a factor map π : X −→ Y is hyper-
confined if, for every extension Ỹ

α−→ Y, the extension X ⊗Y Ỹ
π̃−→ Ỹ is

confined.

However, in trying to prove that the T, T−1 extension is hyper-confined, we
get a similar setup to the proof we gave above, but with a self-joining of W that
does not need to verify property (ii). Since we did not manage to complete the
proof in that more general case, the following question remains open:
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Question 1.4.8. Is π : Y n X −→ Y hyper-confined ? More generally, is it
possible to build a hyper-confined extension ?

1.5 Application to non-standard dynamical filtrations
Let X := (X,A , µ, T ). A dynamical filtration is a pair (F , T ) such that F :=
(Fn)n≤0 is a filtration in discrete negative time on A and each Fn is T -invariant.
The theory of dynamical filtrations was initiated by Paul Lanthier in ([?], [?]).
The definitions we give in Section ?? for extensions are based on the theory of
filtrations we present here, therefore the process is very similar.

Definition 1.5.1. Let (F , T1) be a dynamical filtration on X1 := (X1,A1, µ1, T1)
and (G , T2) a dynamical filtration on X2 := (X2,A2, µ2, T2). We say that (F , T1)
and (G , T2) are isomorphic if there is an isomorphism Φ : X1/F0

→ X2/G0
such

that, for all n ≤ 0, Φ(Fn) = Gn mod µ2.
If F and G are defined on the same system (X,A , µ, T ), we say that (F , T )

is immersed in (G , T ) if for every n ≤ 0, Fn ⊂ Gn and we have the following
relative independence:

Fn+1 ⊥⊥Fn Gn.

In general, we say that (F , T1) is immersible in (G , T2) if there exists some dy-
namical filtration isomorphic to (F , T1) immersed in (G , T2).

We can then define our main classes of filtrations:

Definition 1.5.2. Let (F , T ) be a dynamical filtration on X := (X,A , µ, T ). It
is of product type if there is a sequence (Cn)n≤0 of mutually independent factor
σ-algebras such that

∀n ≤ 0, Fn =
∨
k≤n

Ck mod µ.

It is standard if it is immersible in a product type dynamical filtration.

We chose our definitions to get the following properties:

Proposition 1.5.3. We have

1. If (F , T ) is of product type, then every extension Fn+1 → Fn is of product
type.
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2. If (F , T ) is standard, then every extension Fn+1 → Fn is standard.

Proof. It follows from the definitions.

Below, we use this proposition to build a non-standard filtration using a non-
standard extension.

In the static case (i.e. when T = Id), the existence of super-innovations im-
plies that the standardness of a filtration is an asymptotic property [?, Proposition
3.38]: (Fn)n≤0 is standard if and only if there is a n0 ≤ 0 such that (Fn)n≤n0

is standard. In the dynamical case, the existence of extensions without super-
innovations puts that asymptotic property in question. Then, the existence of
non-standard extensions shows that standardness is not an asymptotic property
for dynamical filtrations (using Proposition ??). This is the main guideline for
what we do next.

One of the main goals in the study of dynamical filtration is to find a standard-
ness criterion, and for that purpose, dynamical I-cosiness was introduced in [?].
It relies on the notion of real time joinings of filtrations: by that we mean a sys-
tem Z := (Z,C , λ, R) and a pair ((F ′, R), (F ′′, R)) defined on Z such that both
(F ′, R) and (F ′′, R) are isomorphic to (F , T ) and immersed in (F ′ ∨F ′′, R).

A dynamical filtration F is I-cosy if for every F0-measurable random vari-
able ξ taking values in any compact metric space (E, d) and every δ > 0 there
exists some integer n0 ≤ 0 and a real time joining ((F ′, R), (F ′′, R)) such that
F ′
n0
⊥⊥ F ′′

n0
and

E[d(ξ′, ξ′′)] ≤ δ,

where ξ′ and ξ′′ are the respective copies of ξ in F ′
0 and F ′′

0 . In the static case, it
is known that I-cosiness is equivalent to standardness (see [?, Theorem 4.9]). In
the dynamical case that is of interest to us here, it was proved in [?] that standard
dynamical filtrations are I-cosy, but the converse was left as an open question.
The purpose of this section is to prove, using a non-standard extension, that the
converse is not true: in the dynamical setting, I-cosiness is necessary but not
sufficient for a dynamical filtration to be standard.

Proposition 1.5.4. There exists a non-standard and I-cosy dynamical filtration.

Proof. Let π : X −→ Y be a factor map yielding a non-standard extension
(we know it exists from Theorem ??). Take a sequence (Vn)n≤−2 of non-trivial
dynamical systems and set

Z = (Z,C , ρ, R) :=

(⊗
n≤−2

Vn

)
⊗X.
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We consider the filtration defined by

Fn :=


∨
k≤n Vk if n ≤ −2∨
k≤−2 Vk ∨Y if n = −1∨
k≤−2 Vk ∨X if n = 0

Since, X
π−→ Y is not standard, it is easy to check that the extension⊗

n≤−2

Vn ⊗X
π̃−→
⊗
n≤−2

Vn ⊗Y

is not either. Therefore, Proposition ?? yields that (F , R) is not standard.
We will use and slightly adapt the argument used in [?] to show that product

type filtrations are I-cosy to show that F is also I-cosy. Let ξ be a F0-measurable
random variable taking values in a compact metric space (E, d) and δ > 0. There
exist n0 ≤ −2 and a

(∨
n0+1≤k≤−2 Vk ∨X

)
-measurable ξ̃ such that

E[d(ξ, ξ̃)] ≤ δ/2.

We now introduce our joining: we set the system

W = (W,D , γ, Q) :=
⊗
n≤n0

V′n ⊗
⊗
n≤n0

V′′n ⊗
⊗

n0+1≤n≤−2

Vn ⊗X,

and denote (F ′,F ′′) the copies of F on W, namely

F ′
n :=


∨
k≤n V′k if n ≤ n0

F ′
n0
∨
∨
n0<k≤n Vk if n0 < n ≤ −2

F ′
−2 ∨Y if n = −1

F ′
−2 ∨X if n = 0

,

and a similar definition for F ′′. Clearly, F ′
n0

and F ′′
n0

are independent and the
copies ξ̃′ and ξ̃′′ of ξ in the filtrations F ′ and F ′′ coincide, so

E[d(ξ′, ξ′′)] ≤ E[d(ξ′, ξ̃′)] + E[d(ξ′′, ξ̃′′)] ≤ δ.

We now only need to check that ((F ′, Q), (F ′′, Q)) is a real time joining, i.e.
for every n ≤ −1:

F ′
n+1 ⊥⊥F ′n F ′′

n and F ′′
n+1 ⊥⊥F ′′n F ′

n.

For n ≤ −2 we get the relative independent condition like in the product type
case. We now check that F ′

0 ⊥⊥F ′−1
F ′′
−1, which reduces to X′ ⊥⊥Y′ Y′′. How-

ever, this is clearly true because Y′ = Y′′.
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We could have simplified this proof by showing that I-cosiness is an asymp-
totic property, and deducing that F is I-cosy since (Fn)n≤−1 is of product type,
and therefore I-cosy. Unfortunately, we have not been able show in general that
I-cosiness is asymptotic.

Here we have exploited the strong structure of some specific extension to get
a non-standard filtration. Therefore it is natural to ask:

Question 1.5.5. Is there an I-cosy dynamical filtration such that each extension
Fn+1 → Fn is of product type, but which is still not standard ?
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Chapter 2

Confined Poisson extensions

2.1 Introduction
2.1.1 Motivations

This chapter investigates the concept of extensions of measure-preserving dy-
namical systems, specifically, extensions given by a factor map π : (Z, ρ,R) →
(X,µ, T ). We mean that Z := (Z, ρ,R) and X := (X,µ, T ) are invertible mea-
sure preserving dynamical systems on standard Borel sets such that X is a factor
of Z via π, and conversely, we also view Z as an extension of X.

This chapter is a continuation of the work done in Chapter ?? (and published in
[?]). There, we introduced the notion of confined extensions: they are extensions
(Z, ρ,R)

π−→ (X,µ, T ) such that the only self-joining λ of (Z, ρ,R) in which the
law of π × π is the product measure µ⊗ µ, is the product joining λ = ρ⊗ ρ (see
Definition ??).

This notion was first of interest to us in the study of dynamical filtrations,
which are filtrations defined on some dynamical system (X,µ, T ) of the form
F := (Fn)n≤0 such that each Fn is T -invariant (see Section ?? for more details).
But we also noticed other interesting results on confined extensions. For example,
we listed properties P that are lifted through confined extensions, i.e. if (X,µ, T )
satisfies P and (Z, ρ,R)

π−→ (X,µ, T ) is confined, then (Z, ρ,R) satisfies P (see
Section ??).

Since we noticed that confined extensions had many interesting properties, we
look for examples in which that behavior arises. In Chapter ??, we considered
extensions well known in the literature, namely, compact extensions and T, T−1-
transformations. In both cases, we gave necessary and sufficient conditions for
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those extensions to be confined.
In this chapter, we give confinement results for a new kind of extension, in the

setting of Poisson suspensions. Take (X,µ, T ) a measure preserving dynamical
system where µ is a σ-finite measure, but assume that µ(X) = ∞. Consider
the probability space (X∗, µ∗) where X∗ is the set of counting measures of the
form

∑
i≥1 δxi , with (xi)i≥1 ∈ XN, and µ∗ the law of the Poisson point process

of intensity µ. One can then define T∗ on (X∗, µ∗) by applying T to each point
of the point process. The resulting dynamical system (X∗, µ∗, T∗) is called the
Poisson suspension over (X,µ, T ). A factor map π : (Z, ρ,R) → (X,µ, T )
between infinite measure systems will then yield a factor map between the Poisson
suspensions: π∗ : (Z∗, ρ∗, R∗) → (X∗, µ∗, T∗). The resulting extension is what
we call a Poisson extension.

We will consider the case where Z := (X × G, µ ⊗mG, Tϕ) is the compact
extension given by a cocycle ϕ : X → G, with G a compact group. We recall that
the map Tϕ is defined as

Tϕ(x, g) := (Tx, g · ϕ(x)).

Our results concern the following Poisson extension:

((X ×G)∗, (µ⊗mG)∗, (Tϕ)∗)
π∗−→ (X∗, µ∗, T∗), (2.1)

with π : (x, g) 7→ x.
In Section ??, we consider the case where ϕ(x) acts as the identity map, for

every x ∈ X . Using a splitting result from [?], we prove that in this case, if
(X,µ, T ) is of infinite ergodic index, the extension (??) is confined (see Theorem
??).

In Section ??, we deal with a more general cocycle ϕ. There, our argument
will rely on the assumption that the compact extension (X × G, µ ⊗ mG, Tϕ) is
of infinite ergodic index. In that case, we make use of Lemma ??, which is a well
know result from Furstenberg. Through some intricate manipulations, we manage
to reduce our problem to a relative unique ergodicity problem for products of the
extension Z

π−→ X, so that we can use Furstenberg’s lemma (i.e. Lemma ??) to
prove that (??) is confined (see Theorem ??).

Since the argument developed in Section ?? requires a compact extension
(X ×G, µ⊗mG, Tϕ) of infinite ergodic index, in Section ??, we give an example
of such an extension, showing that Theorem ?? is not void.
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2.1.2 Basic notions and notation in ergodic theory

A dynamical system is a quadruple X := (X,A , µ, T ) such that (X,A ) is a
standard Borel space, µ is a Borel measure which is σ-finite, i.e. there exist mea-
surable sets (Xn)n≥1 such that µ(Xn) < ∞ and X =

⋃
n≥1Xn, and T is an

invertible measure-preserving transformation. Throughout the chapter, we will
often not specify the σ-algebra A , and will write our dynamical systems as a
triple of the form (X,µ, T ).

If we have two systems X := (X,µ, T ) and Z := (Z, ρ,R), a factor map is a
measurable map π : Z −→ X such that π∗ρ = µ and π ◦ R = T ◦ π, ρ-almost
surely. If such a map exists, we say that X is a factor of Z. Conversely, we also
say that Z is an extension of X. Moreover, if there exist invariant sets X0 ⊂ X
and Z0 ⊂ Z of full measure such that π : Z0 −→ X0 is a bijection, then π is an
isomorphism and we write Z ∼= X.

The system X := (X,µ, T ) is ergodic if T−1A = A implies that µ(A) =
0 or µ(Ac) = 0. It is conservative if there is no non-trivial set A such that
the {T nA}n∈Z are disjoint. Let (X,µ, T ) be a dynamical system with µ(X) =
∞. If (X,µ, T )⊗k is conservative and ergodic, so are all the smaller exponents
(X,µ, T )⊗j , j ≤ k. The ergodic index of (X,µ, T ) is the largest integer k ≥ 0
such that (X,µ, T )⊗k is conservative and ergodic. If (X,µ, T )⊗k is ergodic for
every integer k, the ergodic index is infinite.

Let (X,µ, T ) be a conservative system. For A ⊂ X measurable such that
0 < µ(A) < ∞, we denote the restriction of µ to A by µ A := 1

µ(A)
µ(· ∩ A).

Since the system is conservative, the return time NA(x) := inf{k ≥ 1 |T k ∈ A}
is almost surely finite, allowing us to define the induced transformation

T A : A −→ A
x 7−→ TNA(x)x

.

Lemma 2.1.1. Let Z := (Z, ρ,R) and X := (X,µ, T ) be two σ-finite systems
and π : Z −→ X be a factor map. Then Z is conservative if and only if X is
conservative.

Proof. If Z is conservative, it is easy to see that X is as well. Conversely, assume
that X is conservative. Let A ⊂ Z be a measurable set such that ρ(A) > 0. We
need to show that the sets {RnA}n∈Z are not disjoint. Because (X,µ) is σ-finite,
there are measurable sets (Xp)p≥0 of finite measure such that X =

⋃
p≥0Xp.

Therefore, we have
A =

⋃
p≥0

(A ∩ π−1Xp),
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so there exists p ≥ 0 such that ρ(A ∩ π−1Xp) > 0. Denote C := Xp and B :=
π−1B. Since X is conservative and µ(C) > 0, the induced system (C, µ C , T C) is
well-defined, and it follows that the induced system (B, ρ B, R B) is well-defined.
It is a probability preserving dynamical system, and ρ B(A ∩ B) > 0, so, by the
Poincaré recurrence theorem, there exists n ≥ 1 such that ρ B(R B

n(A∩B)∩(A∩
B)) > 0. Moreover, if N (n)

B is the n-th return time on B, we have R B
n = RN

(n)
B .

Finally, there must be an integer k such thatR B
n(A∩B∩{N (n)

B = k})∩(A∩B)
is not empty, but we have

R B
n(A ∩B ∩ {N (n)

B = k}) = Rk(A ∩B ∩ {N (n)
B = k}).

Therefore, Rk(A ∩B) ∩ (A ∩B) is not empty, which means that RkA ∩A is not
empty.

2.1.3 Joinings and confined extensions

Let X := (X,µ, T ) and Y := (Y, ν, S) be two σ-finite measure preserving dy-
namical systems. A joining of X and Y is a (T × S)-invariant measure λ on
X × Y whose marginals are µ and ν (therefore the marginals have to be σ-finite).
It yields the dynamical system

X×λ Y := (X × Y, λ, T × S).

On this system, the coordinate projections are factor maps that project onto X and
Y respectively. If it is not necessary to specify the measure, we will simply write
X×Y. For the product joining, we will use the notation X⊗Y := X×µ⊗ν Y.
For the n-fold product self-joining under the transformation T×n := T × · · · × T ,
we will write X⊗n.

When X and Y are probability measure preserving systems, there is at least
one joining, the product joining X ⊗Y. However, if we have infinite measures,
the product measure is not a joining because its marginals are not σ-finite. In
fact, there exist pairs of systems for which there does not exist any joining. For
example, Lemma ?? implies that there cannot exist a joining of a conservative and
a non-conservative system.

We now recall the definition of confined extensions, which concerns only prob-
ability measure preserving dynamical systems.

Definition 2.1.2. Let X := (X,µ, T ) and Y := (Y, ν, S) be probability measure
preserving dynamical systems, and π : X −→ Y be a factor map. The extension
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X
π−→ Y is said to be confined if it satisfies one of the following equivalent

properties:

(i) every 2-fold self-joining of X in which the two copies of π are independent
random variables is the product joining: i.e. the only measure λ ∈P(X ×
X) that is T ×T -invariant, with λ(·×X) = λ(X×·) = µ and (π×π)∗λ =
ν ⊗ ν, is λ = µ⊗ µ;

(ii) for every system Z, every joining of X and Z in which the copy of π and the
projection on Z are independent random variables is the product joining;

(iii) for every n ∈ N∗ ∪ {+∞}, every n-fold self-joining of X in which the n
copies of π are mutually independent random variables is the n-fold product
joining.

It was shown in Proposition ?? that the definitions (i), (ii), and (iii) are equiv-
alent. In this chapter, we mainly use the definition (i). As we mentioned, this
concerns only the case for probability measures. An adaptation to the infinite
measure case would be more intricate, mainly because if we assume that a mea-
sure λ on X ×X projects onto ν ⊗ ν on Y × Y and that ν is an infinite measure,
then λ cannot be a joining of µ. That is because, in that case, both projections of
λ on X would not be σ-finite.

The following lemma is useful when proving that an extension is confined:

Lemma 2.1.3. Let Z := (Z, ρ,R) and X := (X,µ, T ) be probability measure
preserving dynamical systems and π : Z −→ X be factor map. If Z is ergodic
and X is weakly mixing, then we can show that the extension Z

π−→ X is confined
by verifying that for any ergodic self-joining λ of Z such that (π× π)∗λ = µ⊗ µ,
we have λ = ρ⊗ ρ.

Proof. Assume that condition of the lemma is verified. Let λ be (not necessar-
ily ergodic) self-joining of Z such that (π × π)∗λ = µ ⊗ µ. Take the ergodic
decomposition of λ:

λ =

∫
λω dP(ω).

Now take the projection on the first coordinate

ρ = λ(· × Z) =

∫
λω(· × Z) dP(ω).
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However, since ρ is ergodic and the measures λω(· ×Z) are R-invariant, we must
have λω(· × Z) = ρ, P-almost surely. Similarly, we get that λω(Z × ·) = ρ,
P-almost surely. Moreover, we can also apply π×π to the ergodic decomposition
of λ:

µ⊗ µ = (π × π)∗λ =

∫
(π × π)∗λω dP(ω).

Since X is weakly mixing, the measure µ ⊗ µ is ergodic. So, as before, we get
that (π × π)∗λω = µ ⊗ µ, P-almost surely. Therefore, for P-almost every ω, the
measure λω verifies all the conditions for us to conclude that λω = ρ ⊗ ρ. By
integrating that, we get that λ = ρ⊗ ρ.

We have shown that π−→ X is confined.

2.1.4 Compact extensions and relative unique ergodicity

Definition 2.1.4. Let (Z, ρ,R)
π−→ (X,µ, T ) be an extension. It is relatively

uniquely ergodic if the only R-invariant measure λ on Z such that π∗λ = µ is
λ = ρ.

Let X := (X,µ, T ) be a measure preserving dynamical system, G a compact
group and ϕ : X −→ G a cocycle. Let mG denote the Haar probability measure
onG. The compact extension of X given by ϕ is the system Z on (X×G, µ⊗mG)
given by the skew product

Tϕ : X ×G −→ X ×G
(x, g) 7−→ (Tx, g · ϕ(x))

.

This is the most well known family of extensions. The only result we will need,
is the following, due to Furstenberg:

Lemma 2.1.5 (Furstenberg [?]). Let X := (X,µ, T ) be an ergodic measure pre-
serving dynamical system where µ is a finite or σ-finite measure. Assume that
the compact extension Z = (X × G, µ ⊗mG, Tϕ) is ergodic. Let λ be a σ-finite
Tϕ-invariant measure on X ×G such that λ(· ×G) = µ. Then

λ = µ⊗mG.

This lemma is usually stated with µ a probability measure, but the infinite
measure case is proven in the exact same way.

Furstenberg’s lemma can be summarized by saying that an ergodic compact
extension is relatively uniquely ergodic.
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2.1.5 Poisson suspensions, splittings and extensions

Let X := (X,µ, T ) be a σ-finite measure preserving dynamical system. For
convenience, we will assume that X = R+ and that µ is a locally finite measure,
i.e. for any bounded set B ⊂ R+, we have µ(B) < ∞. We define the set of
counting measures on X by

X∗ :=

{
locally finite measures of the form

∑
i≥1

δxi

}
.

A point process is a probability measure on X∗. The Poisson point process of
intensity µ, which we denote µ∗, is the point process characterized by the fact
that, for A1, ..., An ⊂ X measurable disjoint subsets such that 0 < µ(Ai) < ∞,
the random variables ω(A1), ..., ω(An), for ω ∈ X∗, are independent Poisson
random variables of respective parameter µ(Ai), for i ∈ J1, nK.

On the probability space (X∗, µ∗), we define the transformation

T∗ :
∑
i≥1

δxi 7→ T∗

(∑
i≥1

δxi

)
=
∑
i≥1

δTxi .

The resulting dynamical system X∗ := (X∗, µ∗, T∗) is called the Poisson suspen-
sion over (X,µ, T ).

It is well known that the Poisson suspension X∗ is ergodic if and only if there
is no T -invariant measurable subset A ⊂ X such that 0 < µ(A) < ∞ (see [?]).
Moreover, this implies that if X∗ is ergodic, it is automatically weakly mixing.
Also, note that it is not necessary that X is ergodic for X∗ to be ergodic.

We use the notion of Poisson splittings from [?], but with different choices
in the notation. A splitting of order n of the Poisson suspension (X∗, µ∗, T∗)
is a family {νi}1≤i≤n of T∗-invariant probability measures on X∗ and λ a T×n∗ -
invariant joining of {νi}1≤i≤n such that Σ

(n)
∗ λ = µ∗, where

Σ(n) : X∗ × · · · ×X∗ −→ X∗

(ω1, ..., ωn) 7−→ ω1 + · · ·+ ωn
.

The splitting is said to be ergodic if λ is an ergodic joining. The splitting is a
Poisson splitting if there exist {µi}1≤i≤n, σ-finite measures on X such that, for
i ∈ J1, nK, νi = µ∗i , and λ is the product measure µ∗1 ⊗ · · · ⊗ µ∗n. With that
notation, the result [?, Theorem 2.6] becomes
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Theorem 2.1.6. Let X := (X,µ, T ) be a σ-finite measure preserving dynamical
system of infinite ergodic index. Then any ergodic splitting of the Poisson suspen-
sion (X∗, µ∗, T∗) is a Poisson splitting.

Consider two σ-finite systems Z := (Z, ρ,R) and X := (X,µ, T ) and a factor
map π : Z −→ X, which means that we have an extension Z

π−→ X of σ-finite
systems. We can then define the map

π∗ :
∑
i≥1

δxi 7→ π∗

(∑
i≥1

δxi

)
=
∑
i≥1

δπ(xi).

One can check that this yields a factor map from Z∗ to X∗, therefore we have
defined an extension Z∗

π∗−→ X∗ between Poisson suspensions. Such an extension
is what we call a Poisson extension.

As we did in Corollary ?? for T, T−1 transformations, we make sure that the
extensions we consider here are not compact, to make sure that we are looking at
a new type of extension and getting original confinement results.

Lemma 2.1.7. Let Z := (Z, ρ,R) and X := (X,µ, T ) be infinite σ-finite systems
and π : Z −→ X be a factor map. If X is conservative and ergodic, then Z∗

is ergodic. Moreover, the extension Z∗ −→ X∗ is relatively weakly mixing, and
therefore it is not compact.

The notion of relative weak mixing introduced in Definition ?? uses the rela-
tively independent product, presented in Section ??. Although the definition we
gave was set in the context of probability measures, the construction of the rela-
tively independent product also works in the exact same way for infinite measure
systems, and we use it in the following proof.

Proof. As we mentioned earlier, a criterion for the ergodicity of Z∗ was given in
[?]. We need to show that the invariant sets of Z are of measure 0 or∞. Let A be
an R-invariant set such that ρ(A) <∞.

Now take a set B ⊂ X of finite measure. Using that A is R-invariant, we get

ρ(A ∩ π−1B) =

∫
1A(1B ◦ π)dρ =

∫
1A(1B ◦ T j ◦ π)dρ

=
1

n

n−1∑
j=0

∫
1A(1B ◦ T j ◦ π)dρ

=

∫
1A

(
1

n

n−1∑
j=0

1B ◦ T j ◦ π

)
dρ.
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However, since X is conservative, ergodic and µ(X) = ∞, we can use [?, Exer-
cise 2.2.1] to see that

1

n

n−1∑
j=0

1B ◦ T j −→
n→∞

0 µ-almost surely.

Next, because ρ(A) <∞, the dominated convergence theorem yields∫
1A

(
1

n

n−1∑
j=0

1B ◦ T j ◦ π

)
dρ −→

n→∞
0,

meaning that ρ(A ∩ π−1B) = 0. Finally, using that µ is σ-finite, it follows that
ρ(A) = 0.

To prove that the extension Z∗ −→ X∗ is relatively weakly mixing, we need
to look at the relative product Z∗ ⊗X∗ Z∗, and prove that it is ergodic. One can
prove that Z∗ ⊗X∗ Z∗ is isomorphic to (Z⊗X Z)∗, the Poisson suspension on the
relative product Z⊗X Z, via the map

ψ :
∑
k≥0

δ(
z
(1)
k ,z

(2)
k

) 7→
(∑
k≥0

δ
z
(1)
k
,
∑
k≥0

δ
z
(2)
k

)
.

However, (Z⊗X Z)∗ is a Poisson extension of X∗. Therefore, using the first part
of the current lemma, we deduce that Z∗ ⊗X∗ Z∗ is ergodic, making Z∗ −→ X∗

relatively weakly mixing. Then, as in the proof of Corollary ??, we use [?, Chapter
6, Part 4] to conclude that Z∗ −→ X∗ is not compact.

2.2 A Poisson extension over a trivial cocycle
In this section, we study Poisson extensions over extensions of the form

T × Id : X ×K −→ X ×K
(x, κ) 7−→ (Tx, κ)

,

on (X × K,µ ⊗ ρ), where K is a standard Borel space and ρ is a probability
measure on K. We start in Section ?? by showing that if T has infinite ergodic in-
dex, the associated Poisson extension is confined. Then in Section ??, we see that
marked point processes enable us to write Poisson extensions through a Rokhlin
cocycle, and we give an application in probability theory by giving an alternative
proof of the De Finetti theorem (see Corollary ??). Finally, in Section ??, we give
an example of a non-confined Poisson extension.
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2.2.1 Confinement as a consequence of Poisson splittings

We derive the content of this section as a consequence of Theorem ??. In [?],
the authors proved Theorem ?? and gave an application of that splitting result
(specifically, [?, Theorem 3.1]). Here, we note that it can be rephrased as a relative
unique ergodicity result for the Poisson extension. In our notation, it becomes:

Theorem 2.2.1. Let X := (X,µ, T ) be a σ-finite measure preserving dynamical
system of infinite ergodic index, and K a standard Borel space. Let λ be an
invariant marked point process over µ∗, i.e. a (T × Id)∗-invariant probability
measure on (X × K)∗ such that (π∗)∗λ = µ∗. If (λ, (T × Id)∗) is ergodic, then
there exists a probability measure ρ on K such that λ = (µ⊗ ρ)∗.

We deduce that the Poisson extension is confined:

Theorem 2.2.2. Let X := (X,µ, T ) be a σ-finite measure preserving dynamical
system of infinite ergodic index, and (K, ρ) a standard probability space. Then
the Poisson extension

((X ×K)∗, (µ⊗ ρ)∗, (T × Id)∗) −→ (X∗, µ∗, T∗),

is confined.

Proof. Set Z := ((X ×K)∗, (µ ⊗ ρ)∗, (T × Id)∗) and π : (x, κ) 7→ x. Let λ be
a 2-fold self joining of Z such that (π∗ × π∗)∗λ = µ∗ ⊗ µ∗. Since Z∗ and X∗ are
ergodic, and even weakly mixing (see Section ?? or [?]), by Lemma ??, one may
assume that λ is ergodic. Note that λ is a probability measure on

(X ×K)∗ × (X ×K)∗.

Both marginals of λ on (X×K)∗ yield a Poisson point process of intensity µ⊗ρ.
We view the realization of both of those processes simultaneously on X ×K and
we tag the points coming from the first coordinate with a 1, and the points coming
from the second coordinate with a 2. To do that formally, we define the map

Ω : (X ×K)∗ × (X ×K)∗ −→ (X ×K × {1, 2})∗
(ω1, ω2) 7−→ ω1 ⊗ δ{1} + ω2 ⊗ δ{2}

,

so that
Ω(ω1, ω2)(· × {i}) = ωi. (2.2)
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Consider η := Ω∗λ. Since Ω ◦ (T × IdK)∗× (T × IdK)∗ = (T × IdK×{1,2})∗ ◦Ω,
we know that η is (T × IdK×{1,2})∗-invariant. Moreover, because λ is assumed
to be ergodic, the system ((X × K × {1, 2})∗, η, (T × IdK×{1,2})∗) is ergodic.
Finally, we need to look at the projection on X∗ via π̃ : (x, κ, i) 7→ x. To that end,
we note that (π̃∗)∗η = (π̃∗ ◦ Ω)∗λ, and

π̃∗ ◦ Ω(ω1, ω2) = π̃∗(ω1 ⊗ δ{1} + ω2 ⊗ δ{2})
= π̃∗(ω1 ⊗ δ{1}) + π̃∗(ω2 ⊗ δ{2}) = π∗ω1 + π∗ω2.

However, (π∗ × π∗)∗λ = µ∗ ⊗ µ∗, which means that, in the above notation, π∗ω1

and π∗ω2 are independent Poisson processes of intensity µ. It is known that the
sum of such two independent Poisson processes is a Poisson process of intensity
2µ. Therefore, (π̃∗)∗η = (π̃∗ ◦Ω)∗λ = (2µ)∗. Theorem ?? tells us that there exists
χ ∈P(K × {1, 2}) such that η = (2µ⊗ χ)∗.

Now we show that χ = ρ⊗(1
2
(δ{1}+δ{2})). LetA ⊂ X such that 0 < µ(A) <

∞, B ⊂ K and i ∈ {1, 2}

e−2µ(A)χ(B×{i}) = η({ω̃ ; ω̃(A×B × {i}) = 0})
= λ({(ω1, ω2) ; ωi(A×B) = 0}) because of (??)

= (µ⊗ ρ)∗({ω ; ω(A×B) = 0}) = e−µ(A)ρ(B).

So, χ(B × {i}) = 1
2
ρ(B). Therefore χ = ρ⊗ (1

2
(δ{1} + δ{2})), so η = (2µ⊗ ρ⊗

(1
2
(δ{1} + δ{2})))

∗. Finally, we get

λ = Ω−1
∗ η = Ω−1

∗ (2µ⊗ ρ⊗ (
1

2
(δ{1} + δ{2})))

∗

= (µ⊗ ρ)∗ × (µ⊗ ρ)∗.

2.2.2 Marked Point processes

Let (X,µ) be a standard Borel space equipped with a σ-finite measure such that
µ(X) = ∞. Without loss of generality, we may assume that X = R+, thus
enabling us to use the natural order on R+, but any other order could be used
here. We way also assume that µ is the Lebesgue measure on R+ (by doing so,
we ignore the case where µ has atoms, but for the rest of our work, that is not
a problem). Up to a set of µ∗-measure 0 we may assume that the elements ω
of (R+)∗ are locally finite measures with no multiplicity, i.e. such that for all
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x ∈ R+, ω({x}) ≤ 1. This allows us to define a sequence (tn)n∈N of measurable
maps from (R+)∗ to R+ such that

ω =
∑
n≥1

δtn(ω),

and
0 ≤ t1(ω) < t2(ω) < · · · .

Each tn(ω) gives us the position of the n-th atom of the counting measure ω.
Now consider a Polish spaceK. We will call a marked point process over µ∗ a

probability measure λ on (R+×K)∗ such that (π∗)∗λ = µ∗, where π : (x, κ) 7→ x.
We already manipulated marked point processes in the previous section, we are
simply giving them a name now. We can describe marked point processes as
follows: define the map

f : (R+)∗ ×KN −→ (R+ ×K)∗

(ω, (κn)n≥1) 7−→
∑

n≥1 δ(tn(ω),κn)
.

Since f is injective, we know from [?, Corollary 15.2] that f((R+)∗ × KN) is a
Borel set and f−1 is measurable, and we can write it as

Φ := f−1 : ω̃ 7→ (π∗(ω̃), (κn(ω̃))n≥1), (2.3)

where (κn(ω̃))n≥1 is called the sequence of the marks of ω̃. For a marked point
process λ, λ

(
f((R+)∗ × KN)

)
= 1, therefore, up to a set of measure 0, f is a

bijection. Moreover, we have the following result, from [?, Lemma 6.4.VI]:

Proposition 2.2.3. Let ρ be a probability measure on K. The Poisson process
(µ⊗ ρ)∗ is a marked point process over µ∗ and f∗(µ∗ ⊗ ρ⊗N) = (µ⊗ ρ)∗.

In other words, if ω̃ ∈ (R+ × K)∗ is distributed according to the Poisson
process of intensity µ⊗ ρ, the sequence of marks (κn(ω̃))n≥1 is i.i.d. of law ρ.

2.2.3 A S(N)-valued cocycle and its action on KN

In Section ??, we saw that, assuming that X = R+, a point process on (X ×K)∗

can be represented on X∗ ×KN, via the map introduced in (??):

Φ : (X ×K)∗ −→ X∗ ×KN

ω̃ 7−→ (π∗(ω̃), (κn(ω̃))n≥1)
,
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where κn(ω̃) is the mark associated to the n-th point of ω̃, once the points of ω̃
are ordered according to their projection on X . Now we mean to determine the
dynamic on X∗ × KN that would correspond to (T × Id)∗ on (X × K)∗. To do
this, we will need a tool to track how the points of ω ∈ X∗ are reordered when T∗
is applied.

The group S(N) is the group of all permutations on N, i.e. the bijections from
N onto itself. Equipped with the metric

d(σ, τ) :=
∑
n∈N

1

2n
1σ(n)6=τ(n),

it is a Polish group, i.e. (S(N), d) is a complete separable metric space such that
the map (σ, τ) 7→ σ◦τ−1 is continuous. This group acts onKN via the measurable
action

(σ, (κn)n≥1) 7→ (κσ−1(n))n≥1. (2.4)

We recall that, given ω ∈ X∗, we denote by (tn(ω))n≥1 the ordered sequence
of the points of ω. To describe the action of T∗ on (tn(ω))n≥1, we define Ψ(ω) as
the unique element of S(N) such that for every n ∈ N, Ψ(ω)(n) is the rank of the
atom T (tn(ω)) in the counting measure T∗ω. This define a cocycle

Ψ : X∗ −→ S(N),

so that
T (tn(ω)) = tΨ(ω)(n)(T∗ω).

We consider the skew-product define by the cocycle Ψ:

(T∗)Ψ : X∗ ×KN −→ X∗ ×KN

(ω, (κn)n≥1) 7−→ (T∗ω, (κΨ(ω)−1(n))n≥1)
.

Then we check that

Φ ◦ (T × Id)∗(ω̃) = (π∗(T × Id)∗ω̃, (κn((T × Id)∗ω̃))n≥1)

= (T∗π∗ω̃, (κΨ(ω)−1(n)(ω̃))n≥1)

= (T∗)Ψ(π∗ω̃, (κn(ω̃))n≥1)

= (T∗)Ψ ◦ Φ(ω̃).

(2.5)

Combined with Proposition ??, this tells us that Φ is an isomorphism from

((X ×K)∗, (µ⊗ ρ)∗, (T × Id)∗) −→ (X∗, µ∗, T∗),
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to
(X∗ ×KN, µ∗ ⊗ ρ⊗N, (T∗)Ψ) −→ (X∗, µ∗, T∗).

Through this isomorphism, Theorem ?? becomes

Theorem 2.2.4. Let X := (X,µ, T ) be a σ-finite measure preserving dynamical
system of infinite ergodic index, and K a standard Borel space. Let λ be a (T∗)Ψ-
invariant probability measure onX∗×KN such that λ(·×KN) = µ∗. If (λ, (T∗)Ψ)
is ergodic, then there exists a probability measure ρ onK such that λ = µ∗⊗ρ⊗N.

As an unexpected corollary, we get the following result, which is the De Finetti
theorem written in the language of ergodic theory:

Corollary 2.2.4.1 (De Finetti, Hewitt-Savage). Let ρ∞ be a S(N)-invariant (un-
der the action defined by (??)) probability measure on KN and ρ its marginal
on the first coordinate. The action (KN, ρ∞,S(N)) is ergodic if and only if
ρ∞ = ρ⊗N.

Proof. If ρ∞ = ρ⊗N, it is ergodic under the action of S(N) for the same reason
that it is ergodic under the shift. For completeness, we detail that argument. Let
A ⊂ KN be a measurable set such that, for every σ ∈ S(N), A = σ−1A mod ρ∞,
where the action of σ is given by (??). Take δ > 0: there exist ` ≥ 1 and a set
B measurable with respect to (κn)0≤n≤` such that ρ∞(A∆B) ≤ δ. Then, for any
permutation σ ∈ S(N) that sends the interval J`+ 1, 2`K onto J1, `K, the set σ−1B
is (κn)`+1≤n≤2`-measurable and therefore independent of B. Finally, we get

ρ∞(A) = ρ∞(σ−1A ∩ A) ≤ ρ∞(σ−1B ∩B) + 2δ

= ρ∞(σ−1B)ρ∞(B) + 2δ = ρ∞(B)2 + 2δ ≤ ρ∞(A)2 + 4δ.

And letting δ go to 0 yields ρ∞(A) = ρ∞(A)2, meaning that ρ∞(A) = 0 or 1.
Assume that (KN, ρ∞,S(N)) is ergodic. Let (X,µ, T ) be a dynamical system

of infinite ergodic index. Since ρ∞ is S-invariant, it follows that µ∗⊗ρ∞ is (T∗)Ψ-
invariant. Then Theorem ?? tells us that the ergodic decomposition of µ∗ ⊗ ρ∞ is
of the form

µ∗ ⊗ ρ∞ =

∫
Γ

µ∗ ⊗ γ⊗NdP(γ) = µ∗ ⊗
∫

Γ

γ⊗NdP(γ),

so ρ∞ =
∫

Γ
γ⊗NdP(γ). However, each measure γ⊗N is S(N)-invariant, and ρ∞ is

ergodic under S(N). Therefore, there exists γ ∈ Γ such that ρ∞ = γ⊗N.
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2.2.4 A non-confined Poisson extension

We give here an example of a non-trivial non-confined Poisson extension, to show
that the infinite ergodic index assumption in Theorem ?? cannot be removed. Take
X := R, µ the Lebesgue measure on R, and

T : x 7→ x+ 1.

The system (X,µ, T ) is neither ergodic nor conservative and its ergodic index is
0, but the Poisson suspension (X∗, µ∗, T∗) is ergodic, since it is Bernoulli. We get
the following:

Proposition 2.2.5. Let (K, ρ) be a non-trivial standard probability space. The
extension ((X ×K)∗, (µ⊗ ρ)∗, (T × Id)∗)→ (X∗, µ∗, T∗) is not confined.

Proof. We will make use of the setup presented in the previous section for the
study of marked point processes. We make some slight adjustments since now
X = R (instead of R+): define a sequence (tn(ω))n∈Z such that

ω =
∑
n∈Z

δtn(ω),

and
· · · t−1(ω) < t0(ω) < 0 ≤ t1(ω) < t2(ω) · · · .

We then also define a cocycle

Ψ̃ : X∗ −→ S(Z),

such that
T (tn(ω)) = tΨ̃(ω)(n)(T∗ω).

In other words, Ψ̃(ω)(n) is the rank of the atom T (tn(ω)) in T∗ω. In our present
case, the map Ψ̃ can be described explicitly: denote the shift S : k 7→ k + 1 and
then one can check that

Ψ̃ : ω 7→ Sω([−1,0[).

Indeed, the shift in the numbering of the atoms of ω is only affected by the atoms
in [−1, 0[ as they go from being smaller than 0 to being greater than 0 once we
apply T .

As in the previous section, we get an isomorphism in between the extensions

((X ×K)∗, (µ⊗ ρ)∗, (T × Id)∗)
π∗−→ (X∗, µ∗, T∗),
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and
(X∗ ×KZ, µ∗ ⊗ ρ⊗Z, (T∗)Ψ̃)

π̃−→ (X∗, µ∗, T∗).

We prove our proposition by showing that the second extension is not confined.
We need to build a non-product self-joining of µ∗ ⊗ ρ⊗Z whose projection via
π̃ × π̃ is µ∗ ⊗ µ∗. It will be more convenient to describe this joining as a measure
on X∗×X∗×KZ×KZ. We start with the marginal on X∗×X∗ which has to be
λ(· × · ×KZ ×KZ) = µ∗ ⊗ µ∗, and for (ω1, ω2) ∈ X∗ ×X∗, the conditional law
λ(ω1,ω2) is as follows. The sequence of marks of ω1, (κn(ω1))n∈Z is chosen with
probability ρ⊗Z. For the choice of κn(ω2), we distinguish two situations:

• If ω1([tn(ω2), tn+1(ω2)[) ≥ 1, we set

` := min{k ∈ Z | tk(ω1) ∈ [tn(ω2), tn+1(ω2)[},

and then we choose κn(ω2) := κ`(ω1).

• If ω1([tn(ω2), tn+1(ω2)[) = 0, we choose κn(ω2) with law ρ, independently
from all the other marks.

The construction of λ is concluded by taking

λ :=

∫
δω1 ⊗ δω2 ⊗ λ(ω1,ω2) d(µ∗ ⊗ µ∗)(ω1, ω2).

Note that our choices for (κn(ω1))n∈Z and (κn(ω2))n∈Z depend only on the relative
positions of the points {tn(ω1)}n∈Z and {tn(ω2)}n∈Z. Since those relative posi-
tions are preserved under application of (T∗×T∗), the measure λ is (T∗)Ψ̃×(T∗)Ψ̃-
invariant (up to a permutation of coordinates).

From our construction, it is clear that λ is not a product measure and that

λ(· ×X∗ × · ×KZ) = µ∗ ⊗ ρ⊗Z.

We are left with checking that λ(X∗ × · × KZ × ·) = µ∗ ⊗ ρ⊗Z. Consider
that ω1, ω2 and (κn(ω2))n<n0 are known and compute the law of κn0(ω2): if
ω1([tn(ω2), tn+1(ω2)[) = 0, it is follows from our construction that the law of
κn0(ω2) is ρ. If ω1([tn(ω2), tn+1(ω2)[) ≥ 1, we have κn(ω2) = κ`(ω1) (see above
for the definition of `). One can check that (κn(ω2))n<n0 only informs us on (some
of) the values of (κn(ω1))n<` and κ`(ω1) is independent of ω1, ω2 and (κn(ω1))n<`.
So, even with ω1, ω2 and (κn(ω2))n<n0 fixed, the law of κ`(ω1) is ρ, so the law of
κn(ω2) is also ρ.
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To sum up, up to a permutation of coordinates, λ is a (T∗)Ψ̃ × (T∗)Ψ̃-invariant
measure on X∗ ×KZ ×X∗ ×KZ, such that

λ(· × · ×X∗ ×KZ) = µ∗ ⊗ ρ⊗Z and λ(X∗ ×KZ × · × ·) = µ∗ ⊗ ρ⊗Z.

So it a self-joining of µ∗ ⊗ ρ⊗Z. Moreover, it projects onto µ∗ ⊗ µ∗ without being
equal to the product measure µ∗ ⊗ ρ⊗Z ⊗ µ∗ ⊗ ρ⊗Z. This precisely means that the
extension

(X∗ ×KZ, µ∗ ⊗ ρ⊗Z, (T∗)Ψ̃) −→ (X∗, µ∗, T∗),

is not confined.

2.3 A Poisson suspension over a compact extension
In this section, we are interested in the Poisson extension over a compact exten-
sion, i.e. over the system Z given by

Tϕ : X ×G −→ X ×G
(x, g) 7−→ (Tx, g · ϕ(x))

,

for some compact group G and measurable cocycle ϕ : X → G. Our goal will be
to show that

Theorem 2.3.1. Let X := (X,µ, T ) be a dynamical system of infinite ergodic
index. If the compact extension (X × G, µ ⊗ mG, Tϕ) is also of infinite ergodic
index, then the Poisson extension

((X ×G)∗, (µ⊗mG)∗, (Tϕ)∗)
π∗−→ (X∗, µ∗, T∗)

is confined.

We start with the Sections ?? and ??, where we introduce some useful notions
and results from the literature. We then prove the main technical step in the proof
of our theorem in Section ??. We conclude in Section ??.

2.3.1 Ergodicity of Cartesian products in spectral theory

We present briefly some results on the ergodicity of Cartesian products of σ-finite
measure preserving dynamical systems.
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We start by introducing some classic notions in spectral theory. Let (X,µ, T )
be a σ-finite measure preserving dynamical system. Consider the space L2(X,µ)
and the Koopman operator

UT : L2(X,µ) −→ L2(X,µ)
f 7−→ f ◦ T .

Denote L2
0(X,µ) ⊂ L2(X,µ) the subspace orthogonal to the space of constant

maps. For f ∈ L2(X,µ), the spectral measure of f , σf , is define as the only
measure on U such that, for every n ∈ Z

σ̂f (n) =

∫
X

f Un
T fdµ.

There exists a finite measure σ0
X on U, unique up to equivalence, such that

• for every f ∈ L2
0(X,µ), σf � σ0

X ,

• and for every finite measure σ such that σ � σ0
X , there exists f ∈ L2

0(X,µ)
such that σ = σf .

It is the restricted maximal spectral type of (X,µ, T ).
We define a L∞-eigenvalue as λ ∈ C such that there exists f ∈ L∞(X,µ)

such that
f ◦ T = λf.

Such a map f is called a L∞-eigenfunction. Denote e(T ) the set of all L∞-
eigenvalues of (X,µ, T ), which is a sub-group of U, provided T is conservative
and ergodic (see [?, Section 2.6]). The notion of L∞-eigenvalues is mainly use-
ful in the infinite measure case. Indeed, if µ(X) < ∞, we have L∞(X,µ) ⊂
L2(X,µ), so L∞-eigenfunctions are simply eigenvectors of the Koopman oper-
ator UT . When T is ergodic, we also know that an eigenvector f of UT is a
L∞-eigenfunction because |f | is almost surely constant.

We will use the following ergodicity criterion, due to Keane (see [?, Section
2.7]):

Theorem 2.3.2. Let X := (X,µ, T ) be a conservative and ergodic dynamical sys-
tem and Y := (Y, ν, S) be an ergodic probability measure preserving dynamical
system. The Cartesian product X⊗Y is ergodic if and only if σ0

Y (e(T )) = 0.

We use that criterion to prove
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Corollary 2.3.2.1. Let X := (X,µ, T ) be a conservative and ergodic dynamical
system and k ≥ 1. If X⊗2k is ergodic, the product system

(X,µ, T )⊗k ⊗ (X∗, µ∗, T∗)

is ergodic.

Proof. Let k ≥ 1. Assume that X⊗2k is ergodic. We show that e(T×k) = {1}.
Take λ ∈ e(T×k)\{1} and f ∈ L∞(Xk, µ⊗k) the associated eigenfunction. De-
fine the tensor function as

f ⊗ f : Xk ×Xk −→ C
(x1, x2) 7−→ f(x1)f(x2)

.

We have

(f ⊗ f) ◦ T×2k = (f ◦ T×k)⊗ (f ◦ T×k) = λλf ⊗ f = f ⊗ f.

Since X⊗2k is ergodic, it yields that f ⊗ f is constant, so f is constant, which
implies that λ = 1. Therefore e(T×k) = {1}.

Moreover, since (X,µ, T ) is ergodic, (X∗, µ∗, T∗) is as well, so σ0
X∗({1}) = 0.

We have shown that σ0
X∗(e(T

×k)) = 0, so Theorem ?? tells us that

(X,µ, T )⊗k ⊗ (X∗, µ∗, T∗)

is ergodic.

Remark 2.3.3. The result from Corollary ?? should be compared to the following
result from Meyerovitch (see [?, Theorem 1.2]):

(X,µ, T )⊗ (X∗, µ∗, T∗) is ergodic if and only if (X,µ, T ) is ergodic.

This gives the result of Corollary ?? in the case k = 1, but with a weaker condi-
tion: we need (X,µ, T ) to be ergodic, instead of (X,µ, T )⊗2. We conjecture that
one could extend the result from Meyerovitch and get the conclusion of Corollary
?? under the weaker assumption that (X,µ, T )⊗k is ergodic.

2.3.2 Distinguishing points in a Poisson process

In this section, we use the sequence (tn(ω))n≥1 introduced in Section ??. Because
of that, we needX to be R+ and the measure µ to be the Lebesgue measure. Some

76



additional aspects of the structure of (R+, µ) will also be useful. The purpose of
this section is to study the map

Φ̃k : Xk ×X∗ −→ X∗

(x1, ..., xk, ω) 7−→ δx1 + · · ·+ δxk + ω
.

We view the points of Xk ×X∗ as a Poisson process for which the first k points
are distinguished, so that we can track each of them individually. To avoid any
multiplicity on the right-hand term, we will study this map on a smaller setX(k) ⊂
Xk ×X∗, defined as

X(k) := {(x1, ..., xk, ω) ∈ Xk ×X∗ |x1 < · · · < xk < t1(ω)}.

From now on, Φk denotes the restriction of Φ̃k to X(k). We start by computing the
measure of X(k), using the fact t1 follows an exponential law of parameter 1:

µ⊗k × µ∗(X(k)) =

∫
X∗

∫
(R+)k

1x1<···<xk<t1(ω)dµ(x1) · · · dµ(xk)dµ
∗(ω)

=

∫
R+

∫
(R+)k

1x1<···<xk<tdµ(x1) · · · dµ(xk)e
−tdt

=

∫
R+

tk

k!
e−tdt = 1,

the last equality being obtained through k successive integrations by parts. We
complete this with the following result

Lemma 2.3.4. Let k ≥ 1. The map Φk sends (µ⊗k ⊗ µ∗) X(k) onto µ∗. Therefore

Φk : (X(k), (µ⊗k ⊗ µ∗) X(k)) −→ (X∗, µ∗),

is an isomorphism of probability spaces.

Proof. It is clear that Φk is a bijection whose inverse is

ω 7→ (t1(ω), ..., tk(ω), ω − (δt1(ω) + · · ·+ δtk(ω))).

We then need to prove that Φk is measure-preserving. We prove that result
by induction on k. The case k = 1 can be found in [?, Proposition 6.1], but we
give a proof for completeness. Denote Exp the law of an exponential variable of
parameter 1.
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To prove that (Φ1)∗(µ⊗ µ∗) X(1) = µ∗, we need to show that, if (x, ω) is
chosen under (µ⊗ µ∗) X(1) , the sequence(

x, t1(ω)− x, (ti+1(ω)− ti(ω))i≥1

)
is i.i.d. of law Exp. First, we know that (ti+1 − ti)i≥1 is i.i.d. of law Exp. It is
also clear that (x, t1 − x) is independent from (ti+1 − ti)i≥1. Therefore, we now
only have to compute the law of (x, t1 − x) under (µ⊗ µ∗) X(1) . Let A, B ⊂ R+

be measurable sets. We have:

µ⊗ µ∗(x < t1, x ∈ A,t1 − x ∈ B) =

∫
A

µ∗(x < t1, t1 − x ∈ B)dµ(x)

=

∫
A

µ∗(x < t1)︸ ︷︷ ︸
=e−x

µ∗(t1 − x ∈ B | t1 > x)︸ ︷︷ ︸
=µ∗(t1∈B)

dµ(x)

=

∫
A

e−xdµ(x)µ∗(t1 ∈ B) = Exp(A) · Exp(B),

where we use the fact that the law of t1 is Exp, and the loss of memory property
of Exp.

Let k ≥ 1, and assume that the result is true for k. We start by noting that
Φk+1 = Φ1 ◦ (Id× Φk) and use the induction hypothesis to prove that

(Id× Φk)∗(µ
⊗k+1 ⊗ µ∗) X(k+1) = (µ⊗ µ∗) X(1) . (2.6)

Indeed, for a measurable map, F : X(1) → R, we have∫
X(k+1)

F (x1, δx2 + · · ·+ δk+1 + ω) dµ⊗k+1(x1, ..., xk+1)dµ∗(ω)

=

∫
R+

∫
X(k)

1x1<x2F (x1,
k+1∑
i=2

δxi + ω) dµ⊗k(x2, ..., xk+1)dµ∗(ω)dµ(x1)

=

∫
R+

∫
X∗

1x1<t1(ω)F (x1, ω)dµ∗(ω)dµ(x1)

=

∫
X(1)

Fd(µ⊗ µ∗),

by the induction hypothesis and the fact that x2 = t1(δx2 +· · · δk+1+ω). Therefore
(??) is proven. We then combine it with the result for k = 1 to conclude that

(Φk+1)∗(µ
⊗k+1 ⊗ µ∗) X(k+1) = (Φ1)∗(µ⊗ µ∗) X(1) = µ∗.
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We now want to study how Φk matches the dynamics on X(k) and X∗. We
recall that we defined Ψ : (R+)∗ → S(N) so that T (tn(ω)) = tΨ(ω)(n)(T∗ω). We
then iterate it to define

Ψp(ω) := Ψ(T p−1
∗ ω) ◦ · · · ◦Ψ(ω).

This iteration means that Ψp(ω)(n) is the rank of the atom T p(tn(ω)) in the count-
ing measure T p∗ω. Now consider

N (k)(ω) := inf{p ≥ 1 |Ψp(ω)(1) = 1, ...,Ψp(ω)(k) = k}.

This is the first time in which the first k points of ω are back to being the first k
points of T p∗ω and in their original order. If the random time N (k) is almost surely
finite, we can define the automorphism TN

(k) on (X∗, µ∗) by(
TN

(k)

∗

)
(ω) := TN

(k)(ω)
∗ (ω).

We conclude this section with the following result:

Proposition 2.3.5. Let X := (X,µ, T ) be a σ-finite measure preserving dynami-
cal system. Assume that T has infinite ergodic index. Then, for any k ≥ 1, N (k) is
µ∗-almost surely well-defined and Φk is an isomorphism between the systems

(X(k), (µ⊗k ⊗ µ∗) X(k) , (T
×k × T∗) X(k))

and
(X∗, µ∗, TN

(k)

∗ ).

Proof. Let k ≥ 1. Since X = (X,µ, T ) is of infinite ergodic index, the system
X⊗k = (Xk, µ⊗k, T×k) is conservative and ergodic. Since µ∗ is a probability
measure, Lemma ?? tells us that the system (Xk × X∗, µ⊗k ⊗ µ∗, T×k × T∗) is
also conservative. Therefore, the induced system

(X(k), (µ⊗k ⊗ µ∗) X(k) , (T
×k × T∗) X(k))

is well-defined. Moreover, if M (k) is the first return time in X(k), then M (k) is
(µ⊗k ⊗ µ∗) X(k)-almost surely finite. However, since we have

Φ̃k ◦ (T×k × T∗) = T∗ ◦ Φ̃k, (2.7)
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one can check that on X(k), we have

M (k) = N (k) ◦ Φk. (2.8)

So, because Lemma ?? shows that (Φk)∗(µ
⊗k ⊗ µ∗) X(k) = µ∗, we deduce that

N (k) is µ∗-almost surely finite. Finally, by combining (??) and (??), one gets

Φk ◦ (T×k × T∗) X(k) = TN
(k)

∗ ◦ Φk.

Since, by Lemma ??, Φk is a bijection for which (Φk)∗(µ
⊗k ⊗ µ∗) X(k) = µ∗, we

have shown that it yields the desired isomorphism of dynamical systems.

2.3.3 Relative unique ergodicity

As before, we assume that X = R+ and µ is the Lebesgue measure. The main
step in proving Theorem ?? is the following relative unique ergodicity result:

Theorem 2.3.6. Let X := (X,µ, T ) be a dynamical system of infinite ergodic in-
dex. If the compact extension (X×G, µ⊗mG, Tϕ) is also of infinite ergodic index,
then the only (Tϕ)∗-invariant measure ρ ∈ P((X × G)∗) such that (π∗)∗ρ = µ∗

is ρ = (µ⊗mG)∗.

As in Section ??, we represent the Poisson extension ((X×G)∗, (µ⊗mG)∗, (Tϕ)∗)
π∗−→

(X∗, µ∗, T∗) through a Rokhlin cocycle. We do this using the representation of
((X ×G)∗, (µ⊗mG)∗) as a marked point process given in Proposition ??.

We start by introducing the skew product group GN oS(N) whose operation
is defined by

((hn)n≥1, τ) · ((gn)n≥1, σ) = ((hσ(n) · gn)n≥1, τ ◦ σ).

This group acts on (GN,mG
⊗N) via the maps

χ(gn)n≥1,σ ((hn)n≥1) :=
(
gσ−1(n) · hσ−1(n)

)
n≥1

.

Then we define the cocycle from X∗ to GN oS(N) by

ϕ : ω 7→ (ϕ(tn(ω))n≥1,Ψ(ω)).

This cocycle induces the following transformation

(T∗)ϕ : X∗ ×GN −→ X∗ ×GN

(ω, (gn)n≥1) 7−→ (T∗ω, χϕ(ω)((gn)n≥1))
.
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Then, for any (Tϕ)∗-invariant measure ρ such that (π∗)∗ρ = µ∗, an adaptation of
the computation (??) show that the map Φ introduced in (??) gives an isomor-
phism between the extensions

((X ×G)∗, ρ, (Tϕ)∗)
π∗−→ (X∗, µ∗, T∗),

and
(X∗ ×GN,Φ∗ρ, (T∗)ϕ) −→ (X∗, µ∗, T∗).

Therefore, to prove Theorem ??, we need to take a (T∗)ϕ-invariant measure λ
such that λ(· × GN) = µ∗ and show that λ = µ∗ ⊗ mG

⊗N. This is what we do
below:

Proof of Theorem ??. Let λ be a (T∗)ϕ-invariant measure on X∗ × GN such that
λ(· × GN) = µ∗. Fix k ≥ 1 and call λk the image of λ via pk, the projection on
X∗ × Gk. The main idea of this proof is to use Proposition ?? to distinguish the
points t1(ω), ..., tk(ω) since they determine the action of (T∗)ϕ on g1, ..., gk and
then view (t1(ω), g1), ..., (tk(ω), gk) as a compact extension of t1(ω), ..., tk(ω) to
which Furstenberg’s relative unique ergodicity Lemma applies.

We start our argument by understanding better the dynamics on g1, ..., gk.
Since (X,µ, T ) has infinite ergodic index, Proposition ?? tells us that the random
time

Ñ (k)(ω, (gn)n≥1) := N (k)(ω)

is λ-almost surely finite. Now note that, by definition of N (k), we have

pk ◦ (T∗)
Ñ(k)

ϕ (ω,(gn)n≥1)

= (TN
(k)(ω)

∗ ω, ϕ(N(k)(ω))(t1(ω)) · g1, ..., ϕ
(N(k)(ω))(tk(ω)) · gk)

= (TN
(k)(ω)

∗ ω, ϕk(ω) · (g1, ..., gk)),

where we define the cocycle ϕk : X∗ → Gk by:

ϕk(ω) := ϕ(N(k)(ω))(t1(ω)), ..., ϕ(N(k)(ω))(tk(ω)),

with
ϕ(p)(x) := ϕ(T p−1x) · · ·ϕ(x).

Therefore λk is invariant under the transformation

(TN
(k)

∗ )ϕk : X∗ ×Gk −→ X∗ ×Gk

(ω, (g1, ..., gk)) 7−→ ((T∗)
N(k)(ω)ω, ϕk(ω) · (g1, ..., gk))

.
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This map yields a compact extension of (T∗)
N(k) , but to apply Furstenberg’s Lemma

(i.e. Lemma ??), we still have to prove that

(X∗ ×Gk, µ∗ ⊗m⊗kG , (TN
(k)

∗ )ϕk) (2.9)

is ergodic.
We recall that M (k) is defined as the return time on X(k) and that M (k) =

N (k) ◦ Φk. Then, Proposition ?? tells us that (X∗ × Gk, µ∗ ⊗m⊗kG , (TN
(k)

∗ )ϕk) is
isomorphic to(

X(k) ×Gk,
(
µ⊗k ⊗ µ∗

)
X(k) ⊗m⊗kG ,

(
(T×k × T∗) X(k)

)
ϕ̂k

)
, (2.10)

where ϕ̂k is the cocycle defined by

ϕ̂k := ϕk ◦ Φk = (ϕ(M(k))(x1), ..., ϕ(M(k))(xk)).

However, it is straightforward to check that, up to a permutation of coordinates,
(??) is an induced system of

(Xk ×Gk ×X∗, µ⊗k ⊗m⊗kG ⊗ µ
∗, T×kϕ × T∗),

which can be written as

(X ×G, µ⊗mG, Tϕ)⊗k ⊗ (X∗, µ∗, T∗). (2.11)

However, this is a factor of

(X ×G, µ⊗mG, Tϕ)⊗k ⊗ ((X ×G)∗, (µ⊗mG)∗, (Tϕ)∗). (2.12)

But, since (X ×G, µ⊗mG, Tϕ) is of infinite ergodic index, Corollary ?? applies
and tells us that (??) is ergodic, and therefore (??) is as well. Since an induced
system on an ergodic system is also ergodic, this yields that (??) is ergodic. In
conclusion, Furstenberg’s Lemma implies that λk = µ∗ ⊗m⊗kG .

This being true for every k ≥ 1, it follows that λ = µ∗ ⊗m⊗NG .

2.3.4 Conclusion of the proof of Theorem ??

We now finish the proof of Theorem ?? by combining our relative unique ergodic-
ity result (Theorem ??) from the previous section with Theorem ??. In our appli-
cation of the splitting result (Theorem ??), the fact that the marginals {νi}i∈J1,nK

are Poisson measures will already be known, and the important part will be the
fact that the associated joining λ is the product joining.
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Proof of Theorem ??. Let X := (X,µ, T ) be a dynamical system, and ϕ : X →
G a cocycle such that the compact extension Z := (X × G, µ ⊗ mG, Tϕ) has
infinite ergodic index.

Let λ be a (Tϕ)∗ × (Tϕ)∗-invariant self-joining of (µ⊗mG)∗ such that

(π∗ × π∗)∗λ = µ∗ ⊗ µ∗. (2.13)

Since, as mentioned in Section ??, (X∗, µ∗, T∗) is weakly mixing, Lemma ??
implies that, up to replacing λwith one of its ergodic components, we may assume
that the system

((X ×G)∗ × (X ×G)∗, λ, (Tϕ)∗ × (Tϕ)∗),

is ergodic. Now set ρ := Σ∗λ. We then use (??) to compute

(π∗)∗ρ = (π∗)∗Σ∗λ = Σ∗(π∗ × π∗)∗λ = Σ∗(µ
∗ ⊗ µ∗) = (2µ)∗.

In other words, (??) means that the projection of ρ onX∗ is the sum of to indepen-
dent Poisson point processes of intensity µ, and the result of this sum is a Poisson
point process of intensity 2µ. Now, since Tϕ has infinite ergodic index, we can
apply Theorem ?? to conclude that ρ = (2µ⊗mG)∗.

Using again the fact that Tϕ has infinite ergodic index, we can now deduce
from Theorem ?? that λ is the product joining

λ = (µ⊗mG)∗ × (µ⊗mG)∗.

2.4 A compact extension of infinite ergodic index
The construction in Theorem ?? relies on a compact extension

(X ×G, µ⊗mG, Tϕ),

which is of infinite ergodic index. In this section, we build a compact extension
that has that property, which shows that Theorem ?? is not void. We start with
Section ??, where we give a criterion for the ergodicity of compact extensions.
Then, in Section ??, we choose a suitable system (X,µ, T ): the infinite Chacon
transformation (see [?, Section 2]). Finally, in Section ??, we describe our choice
for the cocycle ϕ and prove that the resulting transformation Tϕ is of infinite er-
godic index.
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2.4.1 Ergodic compact extensions

Let X := (X,µ, T ) be a measure preserving dynamical system, G a compact
group and ϕ : X −→ G a cocycle. We mean to study ergodic properties of the
compact extension:

Tϕ : X ×G −→ X ×G
(x, g) 7−→ (Tx, g · ϕ(x))

.

In this section, we prove the following lemma, for which a statement can be found
in [?, Theorem 3] for the finite measure case and in [?, Lemma 1] for the infinite
measure case. We give a proof inspired from [?] that works for both cases. This
lemma relies on the notion of characters, for which we use the definition given by
Rudin in [?]: the group of the characters of G, Ĝ, is the set of all continuous maps
χ : G→ U such that, for all g, h ∈ G, χ(g · h) = χ(g)χ(h).

Lemma 2.4.1. Let X := (X,µ, T ) be an ergodic measure preserving dynamical
system where µ is a finite or σ-finite infinite measure. Assume that G is an abelian
group. The compact extension given by Z = (X × G, µ ⊗ mG, Tϕ) is ergodic
if and only if, for every character χ ∈ Ĝ \{1}, there is no measurable function
f : X −→ U such that

f(Tx)

f(x)
= χ(ϕ(x)) almost everywhere. (2.14)

If there is a measurable map f such that (??) holds, we say that χ ◦ ϕ is a co-
boundary. Therefore, Z is ergodic if there is no character χ ∈ Ĝ\{1} for which
χ ◦ ϕ is a co-boundary. In our proof, we will use results on Fourier analysis on
locally compact abelian groups from [?]. This is why we need to assume that G
is abelian.

Proof. Assume that there is a character χ 6= 1 and a map f : X −→ U that
satisfies (??). Then define

h(x, g) := f(x) · χ(g)−1.

One can simply check that

h ◦ Tϕ(x, g) = h(Tx, g · ϕ(x))

= f(Tx) · χ(g · ϕ(x))−1

= f(x) · χ(ϕ(x)) · χ(ϕ(x))−1 · χ(g)−1

= f(x) · χ(g)−1 = h(x, g).
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Since χ 6= 1, h is not constant, and therefore Z is not ergodic.
Conversely, if Z is not ergodic, there exists h ∈ L∞(Z) not almost everywhere

constant such that h ◦ Tϕ = h. For χ ∈ Ĝ, define

fχ(x) :=

∫
G

h(x, g)χ(g)dmG(g).

We know that this integral is well-defined for almost every x because h ∈ L∞(Z).
Then we have, almost surely:

fχ(Tx) =

∫
G

h(Tx, g)χ(g)dmG(g)

=

∫
G

h(Tx, g · ϕ(x))χ(g · ϕ(x))dmG(g)

=

∫
G

h(x, g)χ(g)χ(ϕ(x))dmG(g) = χ(ϕ(x))fχ(x).

Now we simply need to find χ 6= 1 such that fχ is not almost everywhere equal to
0. First, notice that f1 is T invariant, and therefore almost everywhere constant.
Take c ∈ C such that f1 ≡ c. We now argue by contradiction.

Assume that for every χ 6= 1, fχ(x) = 0 for almost every x. Since G is
compact, [?, Theorem 1.2.5] tells us that Ĝ is discrete, and therefore countable.
From that, we deduce that for almost every x, we have

∀χ 6= 1, fχ(x) = 0.

Therefore, using the fact that, for χ 6= 1,
∫
G
χdmG = 0 and f1 ≡ c, we get that,

for almost every x:

∀χ ∈ Ĝ,
∫
G

(h(x, g)− c)χ(g)dmG(g) = 0.

Then, using a result from [?, Section 1.7.3], we know that for those x, the map
g 7→ h(x, g) − c is almost surely 0. Therefore, h ≡ c almost everywhere, which
contradicts our assumption on h.

This means that there exists χ ∈ Ĝ \{1} such that µ({fχ 6= 0}) > 0. Since
the set {fχ 6= 0} is T invariant, this yields that µ({fχ = 0}) = 0, by ergodicity
of X. Finally, define the function f := fχ/|fχ|, which takes its values in U and
satisfies (??).
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In what follows we apply this lemma to a situation where the group G is
(Z/2Z)p. So we need to know the characters of (Z/2Z)p:

Lemma 2.4.2. The characters of Z/2Zp are of the form:

χI :=
⊗
i/∈I

χ1 ⊗
⊗
i∈I

χ−1 =
⊗
i∈I

(−1)• : (ε1, ..., εp) 7→ (−1)
∑
i∈I εi ,

for I ⊂ J1, pK.

Proof. We prove it by induction on p. For p = 1, take χ ∈ Ẑ/2Z and note that,
since characters are group morphisms, we have χ(0) = 1. Next to determine χ(1),
we note that χ(1)2 = χ(1 + 1) = χ(0) = 1. Therefore, χ(1) = 1 or −1. We are
left with two possible characters: χ ≡ 1 or χ : ε 7→ (−1)ε.

For p ≥ 1, assume that the characters of Z/2Zp are as described in the lemma
and take χ ∈ Ẑ/2Zp+1. We have

χ(ε1, ..., εp+1) = χ(ε1, ..., εp, 0)χ(0, ..., 0, εp+1).

Finally, since ε1, ..., εp 7→ χ(ε1, ..., εp, 0) is a character of Z/2Zp and εp+1 7→
χ(0, ..., 0, εp+1) is a character of Z/2Z, the induction hypothesis and the case for
p = 1 end our proof.

2.4.2 Description of the infinite Chacon transformation

Let X := (X,µ, T ) be the system given by the infinite Chacon transformation de-
fined in [?, Section 2]. We chose this transformation because it is known that it has
an infinite ergodic index (see [?, Theorem 2.2]), and because the rank one struc-
ture is convenient to define a suitable cocycle in Section ??. Some other infinite
measure preserving rank one transformations could be used here. For example
the nearly finite Chacon transformation introduced in [?] has all the properties we
require in this work. All the following constructions and proofs could be applied
to that transformation.

As any rank one transformation, the infinite Chacon transformation can be
defined as an increasing union of towers (Tn)n≥1. The tower Tn of order n, is
composed of its levels {E(1)

n , ..., E
(hn)
n } such that

Tn =
hn⊔
k=1

E(k)
n .
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We say that hn is the height of Tn. The transformation T acts on Tn so that, for
k ∈ J1, hn − 1K, we have

TE(k)
n = E(k+1)

n .

All levels of Tn have same measure under µ, and we denote it by µn := µ(E
(k)
n ).

Figure 2.1: Construction of the infinite Chacon transformation

The construction of the sequence (Tn)n≥1 is done inductively. It will be done
by taking intervals of R+ with the Lebesgue measure to be the levels of our towers.
Start by taking the interval [0, 1[ to be T1. Now assume that the tower Tn has been
built. The construction of Tn+1 goes as follows.

Decompose Tn into three disjoint towers of equal measure Tn = T 1
n tT 2

n tT 3
n .

Specifically, split each level of Tn into three intervals of length µn/3, then put the
left-most interval in T 1

n , the middle one in T 2
n and the right one in T 3

n . We will
call spacers a collection of 3hn + 2 intervals of length µn/3, disjoint from Tn. We
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put a spacer on top of T 2
n and 3hn + 1 spacers on top of T 3

n . Once the spacers
are in place, we stack T 1

n , T 2
n and T 3

n on top of each other, which yields Tn+1.
Therefore Tn+1 is a tower of height 2(3hn + 1) whose levels each have measure
µn/3, so µ(Tn+1) ≥ 2µ(Tn). Finally, for k ∈ J1, hn+1 − 1K, define T on E(k)

n+1 as
the translation that sends E(k)

n+1 to E(k+1)
n+1 (which is possible because they are both

intervals of the same length). The transformation is not yet defined on E(hn+1)
n+1 ,

that will be done in the next step of the construction.
We end the construction of (X,µ, T ) by setting X :=

⋃
n≥1 Tn . Since

µ(Tn+1) ≥ 2µ(Tn), we have µ(X) =∞.

2.4.3 Construction of the extension

Take X := (X,µ, T ) the system given by the infinite Chacon transformation in-
troduced in Section ??.

Fix n0 ∈ N and j0 ∈ J1, hn0K. Set A := E
(j0)
n0 , and consider the cocycle taking

its values in Z/2Z (identified with {0, 1}):

ϕ := 1A.

We study the system Z given on (Z, ρ) := (X × {0, 1}, µ⊗B(1/2, 1/2)) by the
transformation

Tϕ : X × {0, 1} −→ X × {0, 1}
(x, ε) 7−→ (Tx, ε+ ϕ(x) mod 2)

.

This is a compact extension of X.

Remark 2.4.3. By a simple induction, one can check that, for all n ≥ n0, there
are 3n−n0 levels in Tn that belong to A.

Theorem 2.4.4. The system Z = (X × {0, 1}, ρ, Tϕ) is of infinite ergodic index,
i.e. for every p ≥ 1, Z⊗p is a conservative and ergodic system.

It is known from the work in [?, Theorem 2.2] that X is of infinite ergodic
index, therefore, our goal is to show that Z is as well. Let p ≥ 1. Then X⊗p is a
conservative and ergodic system, and Z⊗p is the compact extension given by the
cocycle

ϕ×p : Xp −→ {0, 1}p
(x1, ..., xp) 7→ (ϕ(x1), ..., ϕ(xp)).
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By Lemma ??, the characters of {0, 1} (identified to Z/2Z) are

χ1 := 1 and χ−1 := (−1)•.

and the characters of {0, 1}p are the tensor products of the form

χI :=
⊗
i/∈I

χ1 ⊗
⊗
i∈I

χ−1 =
⊗
i∈I

(−1)• : (ε1, ..., εp) 7→ (−1)
∑
i∈I εi ,

for I ⊂ J1, pK. In particular, the character is entirely determined by the choice of
the set I . Then, Lemma ?? tells us that Z⊗p is non-ergodic if and only if there
exist I ⊂ J1, pK with I 6= ∅ and a map f : Xp −→ U such that

f(Tx1, ..., Txp)

f(x1, ..., xp)
= (−1)

∑
i∈I ϕ(xi) almost everywhere. (2.15)

Moreover, since the right-hand term can only take the values 1 and −1, the map
that is equal to 1 when f is in {eiθ; θ ∈ [0, π[} and −1 when f is in {eiθ; θ ∈
[π, 2π[} satisfies the same equation as f . Therefore, we can simply look for maps
f : Xp → {±1} satisfying (??). However, Proposition ?? and Corollary ?? will
show that such functions cannot exist, which will complete the proof of Theorem
??.

We now turn our attention to the proofs of Proposition ?? and Corollary ??.
We start by giving some setup common to both of those results, and we will then
conclude each proof separately in Sections ?? and ??.

Denote νp := µ⊗p. We defineHp
n := Tn× · · ·×Tn. We can decomposeHp

n as

Hp
n =

hn⊔
k1=1

· · ·
hn⊔
kp=1

E(k1)
n × · · · × E(kp)

n .

This gives a filtration on X × · · · ×X:

Fn := σ
(
{E(k1)

n × · · · × E(kp)
n }k1,...,kp∈J1,hnK, (Hp

n)c
)
.

Each Fn is not a σ-finite σ-algebra, because µ((Hp
n)c) = ∞. So the conditional

expectation E[· |Fn] is not well-defined. However, if we fix N ∈ N and consider
the probability space (Hp

N ,
1

νp(HpN )
νp(·∩Hp

N)), for every n ≥ N , Fn yields a finite
partition ofHp

N . Moreover, we can compute that, for any measurable function f :

EHpN [f |Fn] =
1

µpn

∫
E

(k1)
n ×···×E(kp)

n

fdνp. (2.16)

89



The important thing to note is that the right-hand term does not depend on N .
Therefore we define the following, for f : Xp −→ R:

E[f |Fn] :=

{
1
µpn

∫
E

(k1)
n ×···×E(kp)

n
fdνp if (x1, ..., xp) ∈ E(k1)

n × · · · × E(kp)
n

0 if (x1, ..., xp) /∈ Hp
n

.

Despite our choice of notation, this is not a true conditional expectation. However,
since we have (??), we can conclude, using the fact that Xp =

⋃
N≥1H

p
N and that∨

n≥1 Fn separates the points onXp, that by the martingale convergence theorem,
we have

E[f |Fn] −→
n→∞

f almost everywhere.

Before we present the remaining details of the proof, we give a technical lemma:

Lemma 2.4.5. Let p ≥ 1. Let i1, ..., ip ∈ {1, 2, 3}. For almost every (x1, ..., xp) ∈
Xp, for every M ≥ 1, there exits n ≥M such that (x1, ..., xp) ∈ T i1n × · · · × T

ip
n .

In other words, for infinitely many n ≥ 1, the points x1, ..., xp belong to the thirds
of Tn with respective indexes i1, ..., ip.

Proof. We recall that Hp
n := Tn × · · · × Tn and νp := µ⊗p. Let M ≥ 1. Take

M ′ ≥M , and note that

νp
(
∀n ≥M,(x1, ..., xp) ∈ Hp

n\(T i1n × · · · × T ipn )
)

≤ νp
(
∀n ∈ JM,M ′K, (x1, ..., xp) ∈ Hp

n\(T i1n × · · · × T ipn )
)
.

A straightforward induction on M ′ shows that

νp
(
∀n ∈ JM,M ′K, (x1, ..., xp) ∈ Hp

n\(T i1n × · · · × T ipn )
)

=

(
3p − 1

3p

)(M ′−M+1)

νp(Hp
M) −→

M ′→∞
0.

Therefore:

νp
(
∀n ≥M, (x1, ..., xp) ∈ Hp

n\(T i1n × · · · × T ipn )
)

= 0,

which implies

νp
(
∃M ≥ 1,∀n ≥M, (x1, ..., xp) ∈ Hp

n\(T i1n × · · · × T ipn )
)

= 0.

Combining this with the fact that Xp =
⋃
n≥1Hp

n ends our proof.
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Case where #I is odd

Let us first give a rough sketch of the argument to prove that we cannot find f
satisfying (??) when #I is odd. For such a function f , we study the evolution
of its values along the orbit of a point (x1, ..., xp). By (??), every time some
coordinate of index i ∈ I goes through A, it causes a change of sign for f . Now,
if we choose n so that all the {xi}i∈J1,pK start in T 1

n , to avoid hitting the spacers,
after hn applications of T ×· · ·×T , each coordinate is then back in the level from
which it started and its orbit has gone through each level of Tn exactly once. But
we know from Remark ?? that each tower Tn has 3n−n0 levels that are subsets of
A. So, on the piece of the orbit that we consider, the sign of f changes #I · 3n−n0

times, and since #I is odd, this means that the sign of f changes. But, since each
xi is back on the level from which it started, if f is close enough to being constant
on cells of the form E

(k1)
n × · · · ×E(kp)

n , this yields a contradiction. We detail this
argument in the following proposition:

Proposition 2.4.6. Let I ⊂ J1, pK such that #I is odd. There is no measurable
map f : Xp −→ {±1} that satisfies (??).

Proof. Suppose by contradiction that there exists f : Xp −→ {±1} that satisfies
(??). Take δ > 0 and (x1, ..., xp) ∈ Xp. Up to a set of measure 0, we may assume
that there exists N ≥ 1 such that ∀n ≥ N , we have

|E[f |Fn](x1, ..., xp)− f(x1, ..., xp)| ≤ δ. (2.17)

We know from Lemma ??, that, up to another set of measure 0, we may assume
that there is n ≥ N such that

(x1, ..., xp) ∈ T 1
n × · · · × T 1

n .

Let (k1, ..., kp) such that for i ∈ J1, pK, xi ∈ E
(ki)
n . Using the definition of

E[f |Fn], we denote E := E
(k1)
n × · · · × E(kp)

n , x := (x1, ..., xp) and compute

|E[f |Fn](x)− f(x)| =
∣∣∣∣ 1

νp(E)

∫
E

fdνp − f(x)

∣∣∣∣
=

∣∣∣∣f(x)
νp(E ∩ {f = f(x)})− νp(E ∩ {f = −f(x)})

νp(E)
− f(x)

∣∣∣∣
=

∣∣∣∣νp(E)− νp(E ∩ {f = −f(x)})− νp(E ∩ {f = −f(x)})
νp(E)

− 1

∣∣∣∣
= 2

νp(E ∩ {f 6= f(x)})
νp(E)

,
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where we use the facts that f takes only two possible values and |f | = 1. This
shows that (??) implies

νp((E
(k1)
n × · · · × E(kp)

n ) ∩ {f 6= f(x1, ..., xp)}) ≤
δ

2
µpn. (2.18)

Define
B := (E(k1)

n × · · · × E(kp)
n ) ∩ (T 1

n × · · · × T 1
n ),

and
C := (E(k1)

n × · · · × E(kp)
n ) ∩ (T 2

n × · · · × T 2
n ).

Since there is no spacer on top of T 1
n , we get that (T×· · ·×T )hnB = C. However,

since #I is odd, for any (x′1, .., x
′
p) ∈ B, Remark ?? and (??) imply that

f(T hnx′1, ..., T
hnx′p) = (−1)#I·3n−n0f(x′1, ..., x

′
p) = −f(x′1, ..., x

′
p).

Therefore

νp(C ∩ {f = −f(x1, ..., xp)}) = νp(B ∩ {f = f(x1, ..., xp)})

≥ νp(B)− δ

2
µpn.

But, by construction, νp(B) = µpn/3
p. So

νp(C ∩ {f = −f(x1, ..., xp)}) ≥
µpn
3p
− δ

2
µpn

=

(
1

3p
− δ

2

)
µpn >

δ

2
µpn,

if δ < 1/3p. Since C ⊂ E
(k1)
n × · · · × E

(kp)
n , combined with (??), this implies

that f(x1, ..., xp) = −f(x1, ..., xp). However, by definition, f 6= 0, so this is
absurd.

Case where #I is even

If #I is even, the argument given above no longer works: when the orbits of
all the {xi}i∈J1,pK go through the levels of Tn, it causes an even number of sign
changes for f , which means that f remains unchanged. Here we need to make
use of the placement of the spacers in the construction of T . We will fix i0 ∈ I
and choose n so that all the points {xi}i 6=i0 start in T 2

n so that they can hit the
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spacer. On the other hand, the choice of n enables us to assume that xi0 will start
in T 1

n so that its orbit can go through all the levels of Tn without hitting a spacer.
Therefore, after hn + 1 applications of T × · · · × T , all the coordinates of index
i 6= i0 will be back in the level from which they started, but xi0 will be one level
higher, which will yield the equation we get in Proposition ??. Then applying our
reasoning from the odd case will give a contradiction, as stated in Corollary ??.

Let us show the following:

Proposition 2.4.7. Let I ⊂ J1, pK such that I 6= ∅ and #I is even. Assume that
there exists f : Xp −→ {±1} that satisfies (??). Then, for ever i ∈ I , we have:

f(x1, ..., Txi, ..., xp)

f(x1, ..., xp)
= (−1)ϕ(xi) almost everywhere. (2.19)

Proof. Up to a permutation of coordinates, we can assume that 1 ∈ I and deal
with the case i = 1. Define also T̃n := Tn ∩ (X\E(hn)

n ), i.e. we get T̃n by
removing the top level from Tn.

Let (x1, ..., xp) ∈ Xp. Take a small δ > 0. Up to a set of measure 0, we can
assume that there exists N ≥ 1 such that ∀n ≥ N , we have

|E[f |Fn](x1, ..., xp)− f(x1, ..., xp)| ≤ δ,

|E[f |Fn](Tx1, ..., xp)− f(Tx1, ..., xp)| ≤ δ.
(2.20)

Also note that in the construction of a tower, the top level is obtained with a
spacer, so if x1 ∈ Tm, then for every n > m, x1 ∈ Tn\E(hn)

n = T̃n. Since
X =

⋃
n≥1 Tn, this means that if N is large enough, we can also assume that for

every n ≥ N , x1 ∈ T̃n. Finally, using Lemma ??, we know that up to another set
of measure zero, we can find n ≥ N for which (x1, ..., xp) ∈ T 1

n ×T 2
n ×· · ·×T 2

n .
Set k1, ..., kp such that xi ∈ E(ki)

n for every i ∈ J1, pK. The fact that x1 ∈ T̃n
implies that k1 ≤ hn − 1. The same computation that gave (??) shows that (??)
implies

νp
(
(E(k1)

n × · · · × E(kp)
n ) ∩ {f 6= f(x1, ..., xp)}

)
≤ δ

2
µpn, (2.21)

and

νp
(
(E(k1+1)

n × E(k2)
n × · · · × E(kp)

n ) ∩ {f 6= f(Tx1, ..., xp)}
)
≤ δ

2
µpn. (2.22)
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Denote
B := (E(k1)

n × · · · × E(kp)
n ) ∩ (T 1

n × T 2
n × · · · × T 2

n )

and

C := (E(k1+1)
n × E(k2)

n × · · · × E(kp)
n ) ∩ (T 2

n × T 3
n × · · · × T 3

n ).

One can check that, because there is a spacer on top of T 2
n and no spacer on top

of T 1
n , we get

(T × · · · × T )hn+1B = C.

However, using the fact that B ⊂ T̃ 1
n × T 2

n × · · · × T 2
n , we can track the times

f changes sign between B and C. The orbits of the {xi}i 6=1 go through each
level of Tn, therefore contributing (#I − 1)3n−n0 sign changes. The orbit of x1

goes through every level of Tn after hn applications of T , contributing 3n−n0 sign
changes, and one additional sign change from the hn + 1-th application if E(k1)

n ⊂
A, or, equivalently, if ϕ(x1) = 1. This means that for every (x′1, ..., x

′
p) ∈ B, we

have

f(T hn+1x′1, ..., T
hn+1x′p) = (−1)

#I3n−n0+1
E
(k1)
n ⊂Af(x′1, ..., x

′
p)

= (−1)ϕ(x1)f(x′1, ..., x
′
p) because #I is even.

So, we have

νp(C ∩ {f =(−1)ϕ(x1)f(x1, ..., xp)}) = νp(B ∩ {f = f(x1, ..., xp)})
= νp(B)− νp(B ∩ {f 6= f(x1, ..., xp)})
≥ νp(B)− νp

(
(E(k1)

n × · · · × E(kp)
n ) ∩ {f 6= f(x1, ..., xp)}

)
≥ νp(B)− δ

2
µpn, because of (??).

Moreover, νp(B) = µpn/3
p, so

νp
(
(Ek1+1)

n × · · · × E(kp)
n )∩{f = (−1)ϕ(x1)f(x1, ..., xp)}

)
≥ νp(C ∩ {f = (−1)ϕ(x1)f(x1, ..., xp)})

≥
(

1

3p
− δ

2

)
µpn >

δ

2
µpn,

if δ is small enough (δ < 1/3p). However, this is only compatible with (??) if

(−1)ϕ(x1)f(x1, ..., xp) = f(Tx1, ..., xp).
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Corollary 2.4.7.1. Let I ⊂ J1, pK such that I 6= ∅ and #I is even. There is no
measurable map f : Xp −→ {±1} that satisfies (??).

Proof. Assume that there is a measurable map f : Xp −→ {±1} that satis-
fies (??). Up to a permutation of coordinates, we may assume that 1 ∈ I . Fix
(x2, ..., xp) ∈ Xp−1. Up to a set of measure 0 in our choice of (x2, .., xp), we
know from Proposition ?? that the map g(x2,...,xp) : x1 7→ f(x1, ..., xp) satisfies

g(x2,...,xp)(Tx1)

g(x2,...,xp)(x1)
= (−1)ϕ(x1) almost everywhere.

However, Proposition ?? tells us that such a map cannot exist.

Remark 2.4.8. Now that the proof of Theorem ?? is complete, we have an ex-
ample of compact extension of an infinite measure preserving system that is of
infinite ergodic index. But we only proved the infinite ergodic index of a specific
extension, and we wonder if more general results can be found. In particular, a
significant difference between finite and infinite ergodic theory is the fact that for
probability preserving systems, an ergodic index greater or equal to 2 is automat-
ically infinite. This is not true in the infinite measure case, but we could consider
an intermediate situation: take an extension Z

π−→ X of σ-finite infinite measure
systems and assume that X has an infinite ergodic index. Is it possible that Z
have a finite ergodic index greater or equal to 2 ? In our example, proving that
the ergodic index is at least 2 contains exactly as much difficulty as proving it is
infinite, therefore suggesting that the answer could be negative.
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Chapter 3

A class of dynamical filtrations:
weak Pinsker filtrations

In 1958, Kolmogorov and Sinaï introduced the notion of entropy in ergodic the-
ory: the Kolmogorov-Sinaï entropy (or KS-entropy). The same year, Kolmogorov
introduced another important notion: K-systems. He defines a K-system as a dy-
namical system X := (X,A , µ, T ) on which there is a finite generator ξ whose
tail σ-algebra

⋂
n≥1 σ(ξ]−∞,−n]) is trivial. There is an equivalent definition that is

more intrinsic to the system: X := (X,A , µ, T ) is a K-system if, and only if,
every non-trivial observable ξ0 satisfies hµ(ξ, T ) > 0 (a proof of this equivalence,
and a more complete presentation of this notion can be found in [?]). It is also
equivalent to assume that the Pinsker factor of the system is trivial, the Pinsker
factor being the σ-algebra

ΠX = {A ∈ A | h(1A, T ) = 0}.

The Pinsker factor is simply the largest factor of X that is of entropy 0. Therefore,
a K-system has no non-trivial factor of entropy 0: it is entirely non-deterministic.
For example, the most elementary K-systems are the Bernoulli shifts. They are
K-systems because i.i.d. processes satisfy Kolmogorov’s 0-1 law.

Entropy is an invariant that quantifies the "chaos" of a dynamical system,
or more precisely its unpredictability, and many of the questions that arose af-
ter its discovery were aimed at understanding the structure of this "chaos". The
first question, which Kolmogorov posed after proving that Bernoulli shifts are K-
systems, was whether all K-systems are Bernoulli shifts, which would imply that
these chaotic systems have a very simple structure. More general questions then
emerged, and we will return to them in the following paragraphs.
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The discovery of entropy first led to non-isomorphism results, particularly for
Bernoulli shifts: two isomorphic Bernoulli shifts must have the same entropy.
The converse of this result, shown by Ornstein ([?], [?]), is one of the most no-
table successes of the KS-entropy. But the ramifications of Ornstein’s theory go
far beyond Bernoulli shifts, and have had a profound impact on the evolution of
ergodic theory. We will confine ourselves here to telling the story of the weak
Pinsker property.

In the early 1960s, Pinsker, then working in Moscow with Kolmogorov, showed
that any K-factor of X := (X,A , µ, T ) is independent of the Pinsker factor ΠX

(see [?], but this reference is in Russian). Following this result, although the exis-
tence of any specific K-factor had not yet been proved, he issued a conjecture (later
called the "Pinsker conjecture"): any system of non-zero entropy is isomorphic to
the direct product of its Pinsker factor and a K-system. A few years later, Sinai
published [?] which seemed to confirm this conjecture: he proved the existence
of a factor of X isomorphic to a Bernoulli shift of the same entropy as X. Given
Pinsker’s independence result, it would have been sufficient to prove that the fac-
tor constructed by Sinaï and the Pinsker factor generate the entire σ-algebra A to
obtain a result even stronger than Pinsker’s conjecture: X would then be isomor-
phic to the direct product of its Pinsker factor and a Bernoulli shift. This "strong
Pinsker conjecture" would also have proved that any K-system is isomorphic to a
Bernoulli shift.

But this conjecture turned out to be false: Ornstein published a first exam-
ple of a non-Bernoulli K-system [?] which contradicts the strong Pinsker con-
jecture. Following that, many other counterexamples were built, and it turns out
that the family of all K-systems is very broad, leaving little hope for a complete
classification of those systems. Among all these counterexamples, we can find a
construction by Ornstein [?] that can be used to contradict Pinsker’s conjecture.
Furthermore, he then refines this result by constructing a mixing system that does
not verify Pinsker’s conjecture [?]. Thus, all the conjectures formulated in the
early years of the study of KS-entropy turned out to be wrong, revealing a wide
variety of possible phenomena.

One of the ramifications of Ornstein’s work can be found in the work of Thou-
venot, who, starting in 1975, became interested in relatively Bernoulli systems
and developed a "relative" version of Ornstein’s theory. Following this work, in
his 1977 paper [?], he introduced the weak Pinsker property: for any ε > 0,
X := (X,A , µ, T ) is isomorphic to the direct product of a Bernoulli shift B and
a system Xε of entropy ε:

X ∼= Xε ⊗B. (3.1)
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For four decades, however, it was unclear whether all systems verified the
weak Pinsker property. But in 2018, Austin published a paper on the subject [?]
in which he proved that all ergodic systems satisfy the weak Pinsker property.

We can then iterate this splitting operation: take (εn)n≤−1 an increasing se-
quence of positive numbers such that limn→−∞ εn = 0, and start by splitting X
into

X ∼= Xε−1 ⊗B−1,

then split Xε−1 into
Xε−1

∼= Xε−2 ⊗B−2,

and so on. This yields a sequence of systems (Xεn)n≤−1 such that, for every
n ≤ −1, Xεn is a factor of Xεn+1 . By composing the factor maps, it means that
each Xεn is a factor of X, and therefore generates a T -invariant σ-algebra Fn :=
σ(Xεn) ⊂ A . Because of our iterating construction, we see that Fn ⊂ Fn+1, so
the sequence F := (Fn)n≤0 is a filtration. This is what we call a weak Pinsker
filtration on X (see Definition ??).

The purpose of this chapter is to discuss how weak Pinsker filtrations can be
used as a tool to describe the structure of dynamical systems with positive entropy.
In particular, in Section ??, we have introduced some concepts from the theory of
dynamical filtrations, and this is the framework we mean to use to study weak
Pinsker filtrations. This framework is focused on the various possible structures
of filtrations whose tail σ-algebra

⋂
n≤0 Fn is trivial, which is the type of weak

Pinsker filtrations that appear on K-systems (see Theorem ??). Therefore, the
study of weak Pinsker filtrations we suggest would mainly be aimed at classifying
K-systems, and in particular non-Bernoulli K-systems.

In Section ??, we give an overview of the results and open questions that arise
from the study of the properties of weak Pinsker filtrations, and their relation to
the structure of the underlying dynamical system. One of those questions concerns
the uniqueness, up to isomorphism, of weak Pinsker filtrations. In Section ??, we
give a partial answer to this uniqueness problem in the case of Bernoulli systems.
That section is based on ideas suggested to us by Thouvenot. Finally, in Section
??, we give explicit examples of weak Pinsker filtrations, in order to give a more
concrete meaning to all of those abstract notions.
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3.1 Introduction of weak Pinsker filtrations and re-
lated questions

In this section, we introduce the notion of weak Pinsker filtrations, the tools nec-
essary to study them and state some of the main questions concerning those fil-
trations. Since weak Pinsker filtrations are dynamical filtrations, we will use the
framework for classifying dynamical filtrations presented in Chapter ?? (specifi-
cally, see Section ?? for the complete definitions).

3.1.1 Reminders on KS-entropy and Ornstein’s theory and its relative ver-
sion

The notion of entropy first appeared in mathematics in 1948, introduced by Shan-
non in his foundational work on information theory [?]. It is defined as follows:

Definition 3.1.1 (Shannon entropy). Let (X,A , µ) be a probability space and
ξ : X → A a random variable, with A finite or countable. The Shannon entropy
of ξ is

Hµ(ξ) := −
∑
a∈A

µ({ξ = a}) · log µ({ξ = a}).

The number Hµ(ξ) gives the average amount of information given by the random
variable ξ. If we have a probability measure ρ defined directly on A, we can also
define the entropy of that measure

H(ρ) := −
∑
a∈A

ρ(a) · log ρ(a).

In 1958, Kolmogorov and Sinaï used this entropy as a tool to help to describe
quantitatively the behavior of measure preserving dynamical systems.

Let X := (X,A , µ, T ) be a dynamical system. To any random variable ξ0 :
X → A, with A finite or countable, we associate ξ : X → AZ the corresponding
T -process

ξ := (ξn)n∈Z := (ξ0 ◦ T n)n∈Z.

Also, for F ⊂ Z, set ξF := (ξn)n∈F .
The Kolmogorov-Sinaï entropy (or KS-entropy) of a dynamical system is:
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Definition 3.1.2 (Kolmogorov-Sinaï entropy). Let X := (X,A , µ, T ) be a dy-
namical system. For a random variable ξ0 : X → A, define

hµ(ξ, T ) := lim
n→∞

1

n
Hµ(ξJ0,nK).

For a T -invariant σ-algebra B ⊂ A , define

hµ(B, T ) := sup{hµ(ξ, T ) ; ξ0 a B-measurable random variable}.

Finally, set
h(X) := hµ(A , T ).

The KS-entropy satisfies the following continuity result:

Lemma 3.1.3. Let X := (X,A , µ, T ) be a dynamical system and a random
variable ξ0 : X → A, with A finite. For ε > 0, there exists δ > 0 such that, for
any random variable ζ0 : X → A such that µ(ζ0 6= ξ0) ≤ δ, we have

|hµ(ξ, T )− hµ(ζ, T )| ≤ ε.

Proof. In this proof, we will use the conditional entropy: for χ1 : X → Y1 and
χ2 : X → Y2 be two random variables, we define

Hµ(χ1 |χ2) :=
∑
y2∈Y2

µ(χ2 = y2)
∑
y1∈Y1

ϕ(µ(χ1 = y1 |χ2 = y2)),

where ϕ(x) = −x · log(x). We refer to [?, Chapter 2, Section 6] for the basic
properties of this notion. Set d := µ(ζ0 6= ξ0) and note that [?, Theorem 6.2]
states that

Hµ(ξ0 | ζ0) ≤ ϕ(d) + ϕ(1− d) + d log(#A).

Now we compute:

h(ξ, T ) = lim
n→∞

1

n
Hµ(ξ[0,n[) ≤ lim

n→∞

1

n
Hµ((ξ ∨ ζ)[0,n[)

≤ lim
n→∞

1

n

(
Hµ(ζ[0,n[) +

n−1∑
j=0

Hµ(ξj | ζ[0,n[)

)

≤ lim
n→∞

1

n

(
Hµ(ζ[0,n[) +

n−1∑
j=0

Hµ(ξj | ζj)

)
≤ hµ(ζ, T ) +Hµ(ξ0 | ζ0)

≤ hµ(ζ, T ) + ϕ(d) + ϕ(1− d) + d log(#A).
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And, since ϕ is continuous, there exists δ > 0 such that, if d ≤ δ, we have

hµ(ξ, T ) ≤ hµ(ζ, T ) + ε.

By switching ξ and ζ and doing the same reasoning, we and the proof.

It is useful to locate the deterministic aspects of a dynamical system. We do
that by considering the Pinsker factor of a system, which is defined as, for any
factor σ-algebra B

ΠB = {A ∈ B | h(1A, T ) = 0},
and ΠX := ΠA . We will use the following basic result, which can be found in [?,
Theorem 14]:

Lemma 3.1.4. Let X := (X,A , µ, T ) be a dynamical system and B and C be
independent factor σ-algebras. We have

ΠB∨C = ΠB ∨ ΠC .

To be able to compute the entropy of a system, the following result proves to
be most useful.

Theorem 3.1.5 (Kolmogorov-Sinaï). Let X := (X,A , µ, T ) be a dynamical sys-
tem. Consider a random variable ξ0 : X → A and the corresponding T -process
ξ := (ξ0 ◦ T n)n∈Z. Then we have

hµ(σ(ξ), T ) = hµ(ξ, T ).

In particular, if ξ is a generator of A (i.e. A = σ(ξ) mod µ), then h(X) =
hµ(ξ, T ).

From the definition, one easily sees that KS-entropy is invariant under iso-
morphism of dynamical systems, which makes it a useful tool in the classification
of measure preserving dynamical systems. The most remarkable classification
results concern Bernoulli and relatively Bernoulli systems:

Definition 3.1.6 (Bernoulli and relatively Bernoulli). Let X := (X,A , µ, T ) be
a dynamical system.

We say that X (or A ) is Bernoulli if there exists a random variable ξ0 : X →
A such that the corresponding process ξ := (ξ0 ◦ T n)n∈Z is i.i.d. and generates
A , i.e. we have σ(ξ) = A mod µ.

Let B ⊂ A be a factor σ-algebra. We say that X (or A ) is relatively
Bernoulli over B if there is an i.i.d. process of the form ξ := (ξ0 ◦ T n)n∈Z such
that σ(ξ) is independent of B and A = B ∨ σ(ξ) mod µ.
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Those two definitions coincide when B is the trivial factor σ-algebra: X is
relatively Bernoulli over {∅, X} if and only if X is Bernoulli.

Remark 3.1.7. We can consider another approach to define Bernoulli systems:
take A a finite or countable set and ρ a probability measure on A. On the product
probability space (AZ, ρ⊗Z), consider the transformation

S : (an)n∈Z 7→ (an+1)n∈Z.

The map S is called the shift on AZ. One can easily check that ρ⊗Z is S-invariant.
Therefore, this yields a measure preserving dynamical system

B := (AZ, ρ⊗Z, S), (3.2)

which is called a Bernoulli shift. Then a system is Bernoulli if and only if it is
isomorphic to a Bernoulli shift. Similarly, we can see that a system X is relatively
Bernoulli over a factor σ-algebra B if and only if X is isomorphic to a system of
the form Y ⊗ B via a factor map ϕ : X −→ Y × B such that σ(πY ◦ ϕ) = B
mod µ (where πY is the projection of Y ⊗B onto Y).

Using Theorem ??, it is easy to compute the entropy of a Bernoulli system.
Let ξ be an i.i.d. process on X that generates A . We then have

h(X) = hµ(A , T ) = hµ(ξ, T ) = lim
n→∞

1

n
Hµ(ξJ0,nK)

= lim
n→∞

1

n

n∑
i=0

Hµ(ξi) = Hµ(ξ0).

In particular, if X is isomorphic to a system of the form (??), we get

h(X) = h(B) = −
∑
a∈A

ρ(a) log(ρ(a)).

Since, to be isomorphic, two systems need to have the same entropy, this com-
putation enables us to get a non-isomorphism result between any two Bernoulli
systems of different entropy. Remarkably, Ornstein proved that the converse is
also true:

Theorem 3.1.8 (Ornstein [?], [?]). If X and Y are Bernoulli systems such that
h(X) = h(Y), then X ∼= Y.
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This means that the KS-entropy gives a complete classification of Bernoulli
systems. An outstanding result that emerged from Ornstein’s theory was a crite-
rion to characterize Bernoulli systems: finite determination. However, although
this notion is useful in proving abstract results, when studying a given system, it is
not easy to know whether or not it is finitely determined. Because of that, another
criterion called very weak Bernoullicity was developed (see [?, Section 7]). This
is the criterion we are interested in.

For the remainder of this section, we assume that the processes are defined on
finite alphabets. We first need a technical definition. Given a finite alphabet A, an
integer ` ≥ 1 and two words a,b ∈ A` of length ` on A, we define the normalized
Hamming metric between a and b as:

d`(a,b) :=
1

`
#{i ∈ J1, `K | ai 6= bi},

where a = (a1, ..., a`) and b = (b1, ..., b`). We then consider the corresponding
transportation metric on P(A`):

∀µ, ν ∈P(A`), d̄`(µ, ν) := inf

{∫
d`(a,b)dλ(a,b) ; λ a coupling of µ and ν

}
.

Then a process ξ is said to be very weak Bernoulli if, for some ` ≥ 1, the condi-
tional law of ξ[0,`[ given the past of ξ is close enough to the law of ξ[0,`[ in the d̄`
metric. More formally, we state:

Definition 3.1.9 (Very weak Bernoulli). Let X := (X,A , µ, T ) be an ergodic
dynamical system, equipped with a process ξ taking values in a finite alphabet.
We say that ξ is very weak Bernoulli if, for every ε > 0, there exists ` ≥ 1 such
that for every m ≥ 1, we have∫

d̄`
(
ν`(· | a[−m,0[), ν`(·)

)
dν(a) ≤ ε,

where ν is the law of ξ and, for I ⊂ Z, ν`(· | aI) is the conditional law of ξ[0,`[

given that ξI equals aI .
If A = σ(ξ), we say that X (or A ) is very weak Bernoulli.

The fact that very weak Bernoullicity characterizes Bernoulli systems can be
stated as follows:

Theorem 3.1.10 (see [?], [?]). Let X := (X,A , µ, T ) be a dynamical system. A
process ξ on X is very weak Bernoulli if and only if σ(ξ) is Bernoulli.
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Following the work of Ornstein, Thouvenot studied relatively Bernoulli sys-
tems and adapted the definitions of finite determination and very weak Bernoul-
licity to get criteria that characterize relatively Bernoulli systems. Here we give
his adaptation of very weak Bernoullicity:

Definition 3.1.11 (Relatively very weak Bernoulli). Let X := (X,A , µ, T ) be
an ergodic dynamical system, equipped with two processes ξ and η with finite
alphabets. We say that ξ is relatively very weak Bernoulli over η if, for every
ε > 0, there exists ` ≥ 1 such that for every m ≥ 1 and for all k ≥ 1 large
enough, we have∫

d̄`
(
ν`(· | a[−m,0[,b[−k,k]), ν`(· |b[−k,k])

)
dν(a,b) ≤ ε,

where ν is the law of (ξ, η) and, for I, J ⊂ Z, ν`(· | aI ,bJ) is the conditional law
of ξ[0,`[ given that ξI equals aI and that ηJ equals bJ .

If A = σ(ξ) and B = σ(η), we say that X (or A ) is relatively very weak
Bernoulli over B.

Many early results from Thouvenot’s theory were stated for relatively finitely
determined systems. But, we have the following:

Theorem 3.1.12 (see [?]). Let X := (X,A , µ, T ) be an ergodic system and ξ and
η be processes with finite alphabets defined on X. Then ξ is relatively very weak
Bernoulli over η if and only if it is relatively finitely determined over η.

Although we have not explicitly defined relative finite determination here, this
result is useful since it enables us to apply to relatively very weak Bernoulli pro-
cesses results originally stated for relatively finitely determined processes. We
give a summary of the results we will use:

Lemma 3.1.13. Let X := (X,A , µ, T ) be a finite entropy dynamical system and
B a factor σ-algebra. Let ξ and η be processes with finite alphabets defined on
X such that A = σ(ξ) and B = σ(η). If ξ is relatively very weak Bernoulli over
η, then

(i) X is relatively Bernoulli over B,

(ii) any process ρ on X is relatively very weak Bernoulli over η,

(iii) for any factor σ-algebra C ⊂ A , B ∨ C is relatively very weak Bernoulli
over B,
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(iv) any factor σ-algebra C ⊂ A that is independent from B is Bernoulli.

Proof. We prove the lemma mainly by referring to the literature. The statement
(i) follows from [?, Proposition 5] and Theorem ??. Then (ii) follows from [?,
Proposition 4] and Theorem ??, and (iii) follows from (ii). Let us prove (iv):
take ρ a process on X such that C = σ(ρ) mod µ. From (ii), we know that ρ is
relatively very weak Bernoulli over η. However, since C is independent of B,
ρ is independent of η. One can then notice that if we add this independence in
the definition of relative very weak Bernoullicity, we end up with the fact that ρ is
very weak Bernoulli. Finally, Theorem ?? tells us that C = σ(ρ) is Bernoulli.

We have just given many definitions and results concerning processes with
finite alphabets, and the σ-algebras they generate. The following result from
Krieger tells that it is applicable on any finite entropy system:

Theorem 3.1.14 (See [?]). Let X := (X,A , µ, T ) be an ergodic dynamical sys-
tem and B ⊂ A be a factor σ-algebra. If hµ(B, T ) < ∞, there exists a finite
alphabet A and a random variable ξ0 : X → A such that

B = σ({ξ0 ◦ T n}n∈Z) mod µ.

We say that ξ is a finite generator of B.

3.1.2 Positive entropy systems and weak Pinsker filtrations

In 2018, Austin proved the following:

Theorem 3.1.15 (Austin, 2018, [?]). Let X := (X,A , µ, T ) be an ergodic dy-
namical system. For every ε > 0 there exists a factor σ-algebra B such that:

• hµ(B, T ) ≤ ε,

• X is relatively Bernoulli over B.

In other words, X has the weak Pinsker property (as in (??)).

Definition 3.1.16. Let X := (X,A , µ, T ) be a dynamical system and F :=
(Fn)n≤0 a dynamical filtration on X such that F0 = A . We say that F is a
weak Pinsker filtration if

• for every n ≤ −1, Fn+1 is relatively Bernoulli over Fn,
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• and
lim

n→−∞
h(Fn, T ) = 0.

Then, by iterating Austin’s theorem, we see that we can obtain weak Pinsker
filtrations on any ergodic system:

Proposition 3.1.17. Let X := (X,A , µ, T ) be a dynamical system. If X is er-
godic, there exists a weak Pinsker filtration on X. More specifically, for every
increasing sequence (εn)n≤−1 such that limn→−∞ εn = 0, there exists a weak
Pinsker filtration (Fn)n≤0 such that ∀n ≤ −1, h(Fn, T ) = εn.

This simply tells us that weak Pinsker filtrations exist, but gives no explicit
description. To start understanding those filtrations better, we can first link them
to the Pinsker factor of the system:

Proposition 3.1.18. Let X := (X,A , µ, T ) be a dynamical system and F :=
(Fn)n≤0 a weak Pinsker filtration on X. Then the tail σ-algebra F−∞ :=

⋂
n≤0 Fn

is the Pinsker factor of X.

Proof. Let F := (Fn)n≤0 be a weak Pinsker filtration on X. Since, for n0 ≤ 0,
F−∞ ⊂ Fn0 , it follows that h(F−∞, T ) ≤ h(Fn0 , T ). Then, by taking n0 →
−∞, this yields h(F−∞, T ) = 0. Therefore, F−∞ ⊂ ΠX.

Conversely, let us show that, for every n ≤ 0, ΠX ⊂ Fn. Since F is a weak
Pinsker filtration, we can choose Bn ⊂ A a Bernoulli factor σ-algebra such that

Fn ⊥⊥ Bn and Fn ∨Bn = A mod µ.

Then we use Lemma ??:

ΠX = ΠA = ΠFn ∨ ΠBn = ΠFn ⊂ Fn,

because, Bn being Bernoulli, its Pinsker factor is trivial.

Weak Pinsker filtrations are dynamical filtrations, and in Chapter ??, we intro-
duced tools to classify dynamical filtrations, which we use here. For precise defi-
nitions, see Section ??. While trying to connect the properties of a weak Pinsker
filtration with the properties of the underlying system, we get the following simple
results:

Theorem 3.1.19. Let X := (X,A , µ, T ) be a dynamical system and F :=
(Fn)n≤0 be a weak Pinsker filtration on X. Then
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(i) X is a K-system if and only if F is kolmogorovian, i.e.
⋂
n≤0 Fn = {∅, X}

mod µ.

(ii) If the filtration F is of product-type, then X is Bernoulli.

Proof. We know that a system is K if and only if its Pinsker factor is trivial. Then
the equivalence in (i) follows from Proposition ??.

We now prove (ii). Assume that F is a weak Pinsker filtration of product type.
This means that there exists a sequence (Bn)n≤0 of mutually independent factor
σ-algebra such that Fn =

∨
k≤n Bk. Let n ≤ 0. We know that Fn is relatively

Bernoulli over Fn−1 and that Bn is independent of Fn−1. So, Lemma ?? tells us
that Bn is Bernoulli. Therefore, we have A = F0 =

∨
k≤0 Bk, which shows that

we can write A as a product of mutually independent Bernoulli factors. Hence,
A is Bernoulli.

However, this result leaves many open questions. First, we can ask if the con-
verse of (ii) is true, because we remark at the end of Section ?? that, on a Bernoulli
shift, there is at least one weak Pinsker filtration of product type. Therefore the
converse of (ii) is equivalent to the uniqueness problem given in Question ??.
Another area that is left open is to consider other properties from the theory of
dynamical filtrations, like standardness or I-cosiness, and wonder what it implies
of the system if a weak Pinsker filtrations has those properties:

Question 3.1.20. What can we say about X := (X,A , µ, T ) if there is a weak
Pinsker filtration F on X that is standard ? In that case, is X Bernoulli ? And if
the weak Pinsker filtration is I-cosy ?

Our hope is that answering those questions could give additional information on
the structure of non-Bernoulli K-systems.

3.1.3 The uniqueness problem

Let X := (X,A , µ, T ) be an ergodic dynamical system. As mentioned in Propo-
sition ??, the fact that every ergodic systems satisfies the weak Pinsker property
implies that, for any given increasing sequence (εn)n≤−1 that goes to 0 in −∞
such that ε−1 ≤ h(X), there exits a weak Pinsker filtration F on X such that
h(Fn, T ) = εn. But this filtration is not unique, because in the splitting result
given by the weak Pinsker property (??), the choice of the factor σ-algebra gener-
ated by Xε is not unique. For example, take a system of the form

X := Z⊗B1 ⊗B2,
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where Z is a 0 entropy system and B1 and B2 are Bernoulli shifts of equal entropy.
Note that Z⊗B1 and Z⊗B2 generate two different factor σ-algebras on X. But
they are both factors over which X is relatively Bernoulli, and they have the same
entropy. However, we can notice in this example that Z ⊗ B1 and Z ⊗ B2 are
isomorphic. This observation hints to a general result:

Theorem 3.1.21 (From Thouvenot in [?]). Let X := (X,A , µ, T ) and Y :=
(Y,B, ν, S) be ergodic dynamical systems and B be a Bernoulli shift of finite
entropy. If X⊗B and Y ⊗B are isomorphic, then X and Y are isomorphic.

Proof. This proof relies on the weak Pinsker property of X and Y, and Lemma
??. We also use many times that Bernoulli shifts with the same entropy are iso-
morphic.

Since X⊗B and Y ⊗B are isomorphic, we have:

h(X) = h(X⊗B)− h(B) = h(Y ⊗B)− h(B) = h(Y).

Set a := h(X) = h(Y). We can then apply the weak Pinsker property of X and
Y to find two systems X̂, Ŷ and a Bernoulli shift B̂ such that

h(X̂) = h(Ŷ) ≤ a/3,

and
X ∼= X̂⊗ B̂ and Y ∼= Ŷ ⊗ B̂.

This implies
X̂⊗ (B̂⊗B) ∼= Ŷ ⊗ (B̂⊗B).

In other words, there is a system Z and two factor maps pX̂ : Z −→ X̂ and
pŶ : Z −→ Ŷ such that Z is relatively Bernoulli over pX̂ and relatively Bernoulli
over pŶ. But then, Lemma ?? tells us that the factor σ-algebra σ(pX̂ ∨ pŶ) is
relatively very weak Bernoulli over pX̂ and relatively very weak Bernoulli over
pŶ. Therefore, there exist a Bernoulli shift B̃ and two factor maps ϕ1 : Z −→ B̃
and ϕ2 : Z −→ B̃ such that ϕ1 ⊥⊥ pX̂, ϕ2 ⊥⊥ pŶ and

σ(pX̂ ∨ ϕ1) = σ(pX̂ ∨ pŶ) = σ(pŶ ∨ ϕ2).

This implies that
X̂⊗ B̃ ∼= Ŷ ⊗ B̃.

But, since we chose to have h(X̂) = h(Ŷ) ≤ a/3, we get

h(B̃) ≤ h(pX̂ ∨ pŶ) ≤ h(X̂) + h(Ŷ) ≤ 2a/3 ≤ h(B̂).
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Given a last Bernoulli shift B of entropy h(B̂)− h(B̃) we get B̂ ∼= B̃⊗B and

X ∼= X̂⊗ B̂ ∼= X̂⊗ B̃⊗B ∼= Ŷ ⊗ B̃⊗B ∼= Ŷ ⊗ B̂ ∼= Y.

As a consequence of this result, we see that if F := (Fn)n≤0 and G :=
(Gn)n≤0 are two weak Pinsker filtrations on X such that, for all n ≤ 0, h(Fn, T ) =
h(Gn, T ), then we must have that, for each n ≤ 0, X/Fn

∼= X/Gn.
However, this only gives “local isomorphisms”, and it does not necessarily

mean that the filtrations F and G are isomorphic (according to the notion of
isomorphism introduced in Definition ??). Therefore, the following is still an
open question:

Question 3.1.22. Let X := (X,A , µ, T ) be an ergodic dynamical system. Are all
weak Pinsker filtrations on X with the same entropy isomorphic ?

This question is what we call the uniqueness problem.
If X is a Bernoulli shift, and if we take a sequence (εn)n≤0 such that ε0 =

h(X), we can take Bernoulli shifts (Bn)n≤0 such that h(Bn) = εn − εn−1, and
define the system

B :=
⊗
n≤0

Bn.

It is a Bernoulli shift of entropy ε0 = h(X), so it is isomorphic to X. Through
this isomorphism, the factors of the form

⊗
k≤n Bk generate a product type weak

Pinsker filtration on X. Therefore, in the case where X is a Bernoulli shift, the
uniqueness problem becomes:

Question 3.1.23. Let X := (X,A , µ, T ) be a Bernoulli shift. Are all weak
Pinsker filtrations on X of product type ?

3.2 Uniqueness problem on Bernoulli systems
In this section, we present our efforts to tackle Question ??. The ideas developed
here come from discussions with Jean-Paul Thouvenot, and we thank him for
those insights. Specifically, we are going to show:

Theorem 3.2.1. Let X := (X,A , µ, T ) be a Bernoulli system and let F :=
(Fn)n≤0 be a weak Pinsker filtration. There exists some sub-sequence (Fnk)k≤0

which is a weak Pinsker filtration of product type.
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The fact that we are only able to describe the structure of a sub-sequence of F , for
now, seems to be significant. Indeed, we can compare that result to a well known
result from Vershik about static filtrations on a probability space: any filtration
whose tail σ-algebra

⋂
n≤0 Fn is trivial has a sub-sequence that is standard (see

[?, Theorem 3]). However there are many examples of non-standard filtrations
with trivial tail σ-algebra. Therefore, although the context of Vershik’s result is
very different, it emphasizes that Theorem ?? does not give a complete answer to
Question ??.

The main step in proving Theorem ?? is contained in the following proposi-
tion:

Proposition 3.2.2. Let X := (X,A , µ, T ) be a Bernoulli system of finite entropy
and P0 : X → A a finite generator of A , i.e. a finite valued random variable
such that A = σ({P0 ◦ T n}n∈Z). Let H ⊂ A be a factor σ-algebra such that
X is relatively Bernoulli over H . For every ε > 0, there exists δ > 0 such that, if
hµ(H ) ≤ δ, there is a Bernoulli factor σ-algebra B such that

(i) B ⊥⊥H ,

(ii) A = H ∨B mod µ,

(iii) and P0 �ε B.

In this proposition, Krieger’ theorem (Theorem ??) ensures the existence of a
finite generator P since X has finite entropy. The notation “P0 �ε B”, which we
use many times below, means that there exists a B-measurable random variable
Q0 such that µ(P0 6= Q0) ≤ ε.

The existence of a Bernoulli factor satisfying (i) and (ii) is simply the defini-
tion of relative Bernoullicity, the important part of this proposition is the ability
to build a Bernoulli complement that satisfies (iii). Then iterating this result will
yield Theorem ?? (see Section ??).

3.2.1 The technical lemma

In this section, we tackle the main technical and constructive part of the proof of
Proposition ??. It is contained in Lemma ??.

In Section ??, we introduced the notion of very weak Bernoullicity, which
gives a characterization of Bernoulli systems. Here, we use another equivalent
notion: extremality, due to Thouvenot.
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Definition 3.2.3 (See [?]). Let X := (X,A , µ, T ) be an ergodic dynamical sys-
tem and ξ := (ξ0 ◦ T n)n∈Z be a process where ξ0 takes values in some finite
alphabet A. We say that ξ is extremal if, for every ε > 0, there exist δ > 0 and
N ∈ N, such that for every ` ≥ N and every random variable Q : X → B with
#B ≤ 2δ`, there is a set B0 ⊂ B such that µ(Q ∈ B0) ≥ 1 − ε and for b ∈ B0,
we have:

d̄`(ν`(· | b), ν`(·)) ≤ ε,

where ν` is the law of ξ[0,`[ and ν`(· | b) is the law of ξ[0,`[ given that Q equals b.

In [?, Theorem 6.4], it is shown that extremality is equivalent to very weak
Bernoullicity (and hence to Bernoullicity). In particular, we will use the fact that
any process defined on a Bernoulli system is extremal.

The proof of Lemma ?? uses many methods that are usual in Ornstein’s theory
of Bernoulli shifts (a presentation can be found in [?] or [?]). Therefore, we
need to introduce some commonly used notions and results from that theory. The
following combinatorial result is frequently used in Ornstein’s theory:

Lemma 3.2.4 (Hall’s marriage lemma [?]). LetE andF be finite sets, and {Je}e∈E
be a family of subsets of F : ∀e ∈ E, Je ⊂ F . There exists an injective map
ψ : E → F such that ∀e ∈ E,ψ(e) ∈ Je if, and only if for every I ⊂ E, we have

#I ≤ #
⋃
e∈I

Je.

The main way in which the entropy of the processes is used in our arguments
comes from the Shannon-McMillan-Breiman Theorem (see [?, Theorem 13.1]):

Theorem 3.2.5. Let X := (X,A , µ, T ) be an ergodic dynamical system and
ξ0 : X → A. For a ∈ A[0,n[, define

pn(a) := µ(ξ[0,n[ = a).

We have
lim
n→∞

− 1

n
log(pn(ξ[0,n[)) = hµ(ξ, T ), µ-almost surely.

In particular, we also have the convergence in probability: for every ε > 0, there
exists N ≥ 1 such that for every n ≥ N , there exists a set An ⊂ A[0,n[ such that
µ(ξ[0,n[ ∈ An) ≥ 1− ε and for every a ∈ An,

2−(hµ(ξ,T )+ε)n ≤ µ(ξ[0,n[ = a) ≤ 2−(hµ(ξ,T )−ε)n.
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We also need to introduce another tool that is commonly used in Ornstein’s
theory: Rokhlin towers. On a dynamical system X := (X,A , µ, T ), to get a tower
of height n, we need a set F such that the sets T jF , for 0 ≤ j ≤ n−1 are disjoint.
Then the family T := (F, TF, ..., T n−1F ) is what we call a Rokhlin tower, or,
in short, a tower. However, we will also refer to the set

⊔n−1
j=0 T

jF as a tower.
In particular, many times, we will write µ(T ) for µ(

⊔n−1
j=0 T

jF ). The following
result guaranties that Rokhlin of arbitrary height and total measure almost 1 exist
under quite general conditions:

Proposition 3.2.6 (See [?]). Let X := (X,A , µ, T ) be an ergodic dynamical
system and ξ0 a finite valued random variable. For all n ≥ 1 and ε > 0, there
exists a measurable set F ⊂ X such that the sets T jF , for j ∈ [0, n[, are disjoint,
µ(
⋃n−1
j=0 T

jF ) ≥ 1− ε and L(ξ0 |F ) = L(ξ0).

The set F is called the base of the tower T and the sets T jF are the levels. For
any set E ⊂ F , the family

CE := {T jE}0≤j≤n−1

is a tower, and we say that it is a column of T . If ξ0 : X → A is a random
variable, we will be interested in the columns defined by sets of the form Fa :=
F ∩ {ξ[0,n[ = a} with a ∈ A[0,n[. We say that a is the ξ-name of the column
Ca := CFa . The columns {Ca}a∈A[0,n[ give a partition of the levels of T . Now,
conversely, assume that we have a partition of F given by sets E1, ..., Ep, then
the columns CE1 , ..., CEp give a partition of the levels of T . If, moreover, we
associate to each column CEi a name a(i) ∈ A[0,n[ of length n, we can define a
random variable ξ0 on the levels of T so that, for every i, we have CEi = Ca(i) .
We obtain this random variable simply by setting, for i ∈ J1, pK, j ∈ J0, nJ

ξ0 = a
(i)
j on T jEi.

This is the framework we will use to construct our random variables. We are now
ready to turn our attention to the following:

Lemma 3.2.7. Let X := (X,A , µ, T ) be a Bernoulli system of finite entropy and
P0 : X → A a finite valued random variable such that A = σ({P0 ◦ T n}n∈Z)
mod µ. Let H0 : X → H be a finite valued random variable such that X is
relatively Bernoulli over σ(H) := σ({H0 ◦ T n}n∈Z), i.e. we can take a finite
alphabet B and a B-valued i.i.d. process ξ := (ξ0 ◦ T n)n∈Z independent from H
such that A = σ(H)∨ σ(ξ) mod µ. For every ε > 0, there exists δ > 0 such that,
if hµ(H, T ) ≤ δ, for any α > 0, there exists a process ξ̃ such that
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(i) d̄1(L(ξ0),L(ξ̃0)) ≤ α,

(ii) 0 ≤ hµ(H ∨ ξ, T )− hµ(H ∨ ξ̃, T ) ≤ α,

(iii) and P0 �ε σ(ξ̃).

The proof of the lemma being quite intricate, we start by giving a sketch of the
proof. First, we will need a Rokhlin tower Tn of very large height n. This tower
is then divided into the columns Ch (see (??)) generated by H. Each of those
columns is then divided into sub-columns Cb

h (see (??)) generated by ξ. Because
H ∨ ξ generate A , we can approach P0 by some random variable P̃0 depending
on finitely many coordinates ofH∨ξ. It enables us to associate to each Cb

h a word
P̃[0,n[(h, b) which gives a good approximation of P0 on the levels of Cb

h. We will
define ξ̃0 by giving Cb

h a new ξ̃-name, to replace b. Our goal is to choose those
names so that we can get a good approximation of P̃[0,n[(h, b) by simply knowing
the ξ̃-name of Cb

h, regardless of h. To do that, we fix a column Ch0 and use it as a
“model” for the other columns. Then the extremality of P comes into play: it tells
us, for most choices of h, the families {P̃[0,n[(h0, b)}b∈Bn and {P̃[0,n[(h, b)}b∈Bn
are quite similar. More specifically, we show that, for most b, there are names b̃
such that dn(P̃[0,n[(h0, b̃), P̃[0,n[(h, b)) is small. Those names are then suitable ξ̃-
names forCb

h. However, when we choose among those suitable names, we need to
make sure that we are not giving the same name to too many columns, otherwise
we might loose to much information, and we could not get (ii). This is done using
Hall’s marriage lemma.

Proof of Lemma ??. In this proof, we will use many parameters, that will depend
on each other. We start with a presentation of those parameters, and the order in
which they are chosen.

• Let ε > 0. This parameter is chosen first, as it appears in the statement of
the lemma. Then we choose δ > 0 and N ≥ 1, depending on ε via the
extremality of P , and require that hµ(H, T ) < δ.

• Let α > 0. This is another arbitrarily small parameter that appears in the
statement of the lemma. It does not depend on ε nor δ.

• Next, we introduce 0 < γ < 1, which needs to be small with respect to α
and ε for (ii) and (iii) to hold.

113



• Then we take β > 0, which will be our most used parameter. It depends
on all previous parameters, and throughout the proof, we will give many
instances where it needs to be chosen small enough with respect to those
parameters. With β fixed, we take n0 ≥ 1 to get P0 �β2 (H ∨ ξ)[−n0,n0].

• Finally, we choose an integer n, which will be the height of the Rokhlin
tower. It is chosen larger than N . We also need it to be large enough for
us to apply the Shannon-McMillan-Breiman theorem, as well as Birkhoff’s
ergodic theorem. As n will appear in several estimates, our choice of n also
depends on ε, δ, γ, β and n0.

Step 1: The setup of the tower

We apply the Shannon-McMillan-Breiman theorem (i.e. Theorem ??) to know
that, since n is large enough, there exist two sets En ⊂ H [0,n[ and Bn ⊂ B[0,n[

such that

µ(H[0,n[ ∈ En) ≥ 1− β, and µ(ξ[0,n[ ∈ Bn) ≥ 1− β, (3.3)

and we have the following estimates:

∀h ∈ En, 2−(hµ(H,T )+β)n ≤ µ(H[0,n[ = h) ≤ 2−(hµ(H,T )−β)n, (3.4)

∀b ∈ Bn, 2−(hµ(ξ,T )+β)n ≤ µ(ξ[0,n[ = b) ≤ 2−(hµ(ξ,T )−β)n. (3.5)

Throughout the remainder of the proof, we will want the elements of Bn and En to
have some additional properties, and to get that we will need to restrict ourselves
to subsets of Bn and En. However, the measure of the complement of those subsets
will always be controlled by a multiple of β, so, to simplify notation, we will still
call those sets Bn and En and assume that (??) still holds.

Birkhoff’s ergodic theorem gives us additional information on the elements of
Bn: for any sequence b ∈ B[0,n[ and any element b′ ∈ B, denote fn(b, b′) the
frequency at which the element b′ appears in the sequence b. This can also be
defined as follows:

∀x ∈ {ξ[0,n[ = b}, fn(b, b′) :=
1

n

n−1∑
j=0

1{ξ0=b′}(T
jx). (3.6)

From this definition of fn, by applying Birkhoff’s ergodic theorem, provided n is
large enough, we can choose Bn so that for every b ∈ Bn∑

b′∈B

|fn(b, b′)− µ(ξ0 = b′)| ≤ β. (3.7)
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SinceH∨ξ generates A , we can find n0 ≥ 1 so that P0 �β2 (H∨ξ)[−n0,n0]. This
means that there exists a (H∨ ξ)[−n0,n0]-measurable random variable P̃0 such that
µ(P̃0 6= P0) ≤ β2.

By making use of Proposition ??, we can build a set G such that F ′ := TG
is disjoint from G and F ′ is the base of a tower Gn := {T jF ′}0≤j≤n−1 such that
µ(Gn) ≥ 1− β and

L((H ∨ P̃ ∨ ξ)[0,n[ |F ′) = L((H ∨ P̃ ∨ ξ)[0,n[). (3.8)

The set G will be useful later to code the entrance of the tower. We slightly
reduce the tower by setting F := F ′ ∩ {H[0,n[ ∈ En} ∩ {ξ[0,n[ ∈ Bn} and Tn :=
{T jF}0≤j≤n−1. One can then use (??) with our previous estimates to see that
µ(Tn) ≥ 1− 3β.

We then split Tn intoH-columns: for h ∈ En, we define

Ch := {T j(F ∩ {H[0,n[ = h})}0≤j≤n−1, (3.9)

so that Tn =
⊔

h∈En Ch (we mean that the levels of Tn are disjoint unions of the
levels of Ch). For each h ∈ En, we say that Ch is the column of H[0,n[-name h.
We also denote by Fh := F ∩ {H[0,n[ = h} the base of Ch.

Step 2: Using the extremality of P

We plan on modifying ξ into a process ξ̃ so that the joint law of P ∨ ξ̃ is almost
the same in most of the columns {Ch}h∈En . We start by using the fact that X is
Bernoulli to see that the law of P is almost the same on each column Ch. Indeed,
since X is Bernoulli, P is extremal, which means we can fix δ > 0 and N ≥ 1
as the numbers associated to ε3/4 in the definition of extremality and assume that
hµ(H , T ) < δ. On the other hand, from (??), we deduce that

#En ≤ 2(hµ(H,T )+β)n.

Next we define the partition

Q :=

{
∗ on {H[0,n[ /∈ En} ∪ {ξ[0,n[ /∈ Bn}
H[0,n[ on {H[0,n[ ∈ En} ∩ {ξ[0,n[ ∈ Bn}

.

In particular, we know that µ(Q = ∗) ≤ 2β. Moreover, the number of values
taken by Q is bounded by

#En + 1 ≤ 2(hµ(H,T )+β)n + 1 ≤ 2nδ,
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for β small enough. Therefore the extremality of P tells us that, since n ≥ N ,
there exists a subset Ēn ⊂ En such that

µ(Q /∈ (Ēn ∪ {∗})) ≤ ε3/4 + 2β ≤ ε3 ≤ ε, (3.10)

and for h ∈ Ēn, we have

d̄n(L(P[0,n[ | Q = h),L(P[0,n[)) ≤ ε3/4.

Moreover, since µ(P0 6= P̃0) ≤ β2, up to making En slightly smaller, we can
assume that for every h ∈ En, we have

µ(P̃0 6= P0 | Q = h) ≤ β. (3.11)

Therefore, for β small enough with respect to ε3, this yields:

d̄n(L(P̃[0,n[ | Q = h),L(P̃[0,n[)) ≤ ε3/3. (3.12)

Step 3: Framework for the construction of ξ̃0

We start the construction of ξ̃ by setting ξ̃0 := ∗ on G = T−1F ′, where ∗ repre-
sents a symbol that does not belong to B. Later in the proof, this will allow us to
detect the entrance into Tn from the value of the process ξ̃. Then define ξ̃0 to take
any value in B on the rest of T cn . For h ∈ En\Ēn, on Ch, we set ξ̃0 := ξ0. We are
left with defining our new random variable ξ̃0 on the columns Ch, with h ∈ Ēn.
We start by fixing h0 ∈ Ēn, and the column Ch0 will serve as a “model” for the
other columns.

Next we fix an h ∈ Ēn. We define sub-columns of Ch: for b ∈ Bn,

Cb
h := {T j(F ∩ {H[0,n[ = h} ∩ {ξ[0,n[ = b})}0≤j≤n−1. (3.13)

We say that b the ξ-name of Cb
h. Because of our definition of F and (??), the set

Bn gives us exactly the ξ-names of all the sub-columns in Ch. We will then give
each sub-column Cb

h a new word b̃ ∈ Bn and define the random variable ξ̃0 on Cb
h

as the only variable such that b̃ is the ξ̃-name of Cb
h. This means that to conclude

the construction of ξ̃0 on Ch, we simply need to build a map ϕh : Bn −→ Bn, and
the properties we will obtain on ξ̃ will follow from our choice for ϕh.

In order to give us some additional leeway, we use the parameter γ > 0 intro-
duced at the start of the proof: we define n1 := b(1− γ)nc ≤ n, and for b ∈ Bn,
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we denote by bn1 := b[0,n1[ ∈ B[0,n1[ the truncated sub-sequence of b of length
n1. Conversely, for b̄ ∈ B[0,n1[, define

B(b̄) := {b ∈ Bn | bn1 = b̄},

and
Bn1 := {b̄ ∈ B[0,n1[ |B(b̄) 6= ∅}.

We will obtain the map ϕh by building an injective map ψh : Bn1 −→ Bn and set-
ting ϕh(b) := ψh(bn1). We start by noting that, in our application of the Shannon-
McMillan-Breiman Theorem, provided n is large enough, we can assume that the
estimate (??) still holds when replacing n by n1. More precisely, we mean that,
up to making Bn smaller, we can assume that we have the estimate: for b̄ ∈ Bn1

2−(hµ(ξ,T )+β)n1 ≤ µ(ξ[0,n1[ = b̄) ≤ 2−(hµ(ξ,T )−β)n1 . (3.14)

Moreover, up to making Bn slightly smaller, we can assume that we also have,
for b̄ ∈ Bn1

µ(ξ[0,n1[ = b̄, ξ[0,n[ ∈ Bn) ≥ 1

2
µ(ξ[0,n1[ = b̄). (3.15)

We do this by considering the set

C := {b̄ ∈ Bn1 |µ(ξ[0,n1[ = b̄, ξ[0,n[ /∈ Bn) ≥ 1

2
µ(ξ[0,n1[ = b̄)}.

From the definition of C, we get

1

2
µ(ξ[0,n1[ ∈ C) ≤ µ(ξ[0,n[ /∈ Bn) ≤ β.

Then, we replace Bn with {b ∈ Bn | bn1 /∈ C}. Because the set we removed from
Bn is measurable with respect to the truncated sequences of length n1, for b̄ /∈ C,
this change does not affect the value of the left-hand term in (??). Using this and
the definition of C, we see that after replacing Bn with {b ∈ Bn | bn1 /∈ C}, we can
indeed assume that (??) holds for every b̄ ∈ Bn1 .

Finally, putting (??) and (??) together, we get, for b̄ ∈ Bn1

µ(ξ[0,n1[ = b̄, ξ[0,n[ ∈ Bn) ≥ 1

2
2−(hµ(ξ,T )+β)n1 ≥ 2−(hµ(ξ,T )+2β)n1 , (3.16)

for n1 large enough. This will enable us to control the measure of the part of the
truncated column over {ξ[0,n1[ = b̄} that is in Tn.
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Step 4: Estimates for Hall’s marriage lemma

From (??) and (??), we can tell that

#Bn1 ≤ 2(hµ(ξ,T )+β)n1 ≤ 2(hµ(ξ,T )+β)(1−γ)n

≤ 2(hµ(ξ,T )−γhµ(ξ,T )+β)n ≤ (1− β)2(hµ(ξ,T )−β)n ≤ #Bn,

for β small enough with respect to γ. This inequality is also clearly true from
the definition of Bn1 , but we include this computation, as a similar one will be
essential later in the proof. That being said, this inequality means that it is possible
to find an injective map from Bn1 to Bn, but we want to be more specific about
which injective map we choose. To that end, we will make use of Hall’s marriage
lemma. To do that, for each b̄ ∈ Bn1 , we need to specify which elements of Bn
we consider suitable ξ̃-names for the columns {Cb

h; b ∈ B(b̄)}.
We recall that n0 is the integer chosen so that P̃0 is (H∨ξ)[−n0,n0]-measurable.

Define Ln := [n0, n1−n0[⊂ Z and ` := n1− 2n0 the length of Ln. Because P̃0 is
(H ∨ ξ)[−n0,n0]-measurable, P̃Ln is (H ∨ ξ)[0,n1[-measurable. So, for h fixed, for
each b̄ ∈ Bn1 , on the set {H[0,n[ = h, ξ[0,n1[ = b̄}, there can be only one value of
P̃Ln , which we denote P̃Ln(h, b̄).

For b̄ ∈ Bn1 , the suitable corresponding ξ̃-names will be the elements b ∈ Bn
for which d`(P̃Ln(h0, bn1), P̃Ln(h, b̄)) ≤ ε. More formally, we set

Jb̄ := {b ∈ Bn | d`(P̃Ln(h0, bn1), P̃Ln(h, b̄)) ≤ ε},

and we want to build ψh so that we have

ψh(b̄) ∈ Jb̄, (3.17)

for as many b̄ ∈ Bn1 as possible.
From (??), it follows that

d̄n(L(P̃[0,n[ | Q = h),L(P̃[0,n[ | Q = h0)) ≤ 2ε3/3.

Therefore:

d̄`(L(P̃Ln | Q = h),L(P̃Ln | Q = h0))

≤ n

n1 − 2n0

d̄n(L(P̃[0,n[ | Q = h),L(P̃[0,n[ | Q = h0))

≤ n

(1− γ)n− n0

2ε3/3 < ε3,
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for n large enough. So there exists λ ∈P(ALn×ALn) a coupling of L(P̃Ln | Q =
h) and L(P̃Ln | Q = h0) such that∫

d`(p1,p2)dλ(p1,p2) ≤ ε3.

Denote by λ1 and λ2 the marginals of λ, i.e. λ1 = L(P̃Ln | Q = h) and λ2 =
L(P̃Ln | Q = h0). We are interested in the set A` ⊂ ALn defined by

A` := {p ∈ ALn ; λ(d`(p1,p2) ≤ ε |p1 = p) ≥ 1− ε}.

The following gives an estimate on the measure of A`:

ε3 ≥
∫
d`(p1,p2)dλ(p1,p2) ≥

∫
p1 /∈A`

d`(p1,p2)dλ(p1,p2)

=

∫
p/∈A`

∫
d`(p1,p2)dλ(p1,p2 |p1 = p)dλ1(p)

≥
∫
p/∈A`

λ(d`(p1,p2) > ε |p1 = p) · εdλ1(p)

> ε2µ(P̃Ln /∈ A` | Q = h),

so µ(P̃Ln /∈ A` | Q = h) < ε. In other words, if we set

B̄n1(h) := {b̄ ∈ Bn1 | P̃Ln(h, b̄) ∈ A`},

we have µ(ξ[0,n1[ ∈ B̄n1(h) | Q = h) ≥ 1− ε. The set B̄n1(h) is the set on which
we want (??) to hold. Hall’s marriage lemma tells us that there exists an injective
map ψh : B̄n1(h)→ Bn for which (??) is true if we have the following:

∀I ⊂ B̄n1(h), #I ≤ #
⋃
b̄∈I

Jb̄. (3.18)

Let I ⊂ B̄n1(h). Consider K :=
⋃

b̄∈I{P̃Ln(h, b̄)} ⊂ A` and note that⋃
b̄∈I

Jb̄ = {b ∈ Bn | d`(P̃Ln(h0, bn1), K) ≤ ε}.
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Taking that into account, we have

#
⋃
b̄∈I

Jb̄ ≥ 2(hµ(ξ,T )−β)nµ(d`(P̃Ln(h0, ξ[0,n1[), K) ≤ ε, ξ[0,n[ ∈ Bn)

= 2(hµ(ξ,T )−β)nµ(d`(P̃Ln , K) ≤ ε, ξ[0,n[ ∈ Bn |H[0,n[ = h0)

= 2(hµ(ξ,T )−β)nµ(ξ[0,n[ ∈ Bn)µ(d`(P̃Ln , K) ≤ ε | Q = h0)

≥ 2(hµ(ξ,T )−β)n(1− β)λ(d`(p1,p2) ≤ ε,p1 ∈ K)

≥ 2(hµ(ξ,T )−2β)n

∫
p∈K

λ(d`(p1,p2) ≤ ε |p1 = p)dλ1(p)

≥ 2(hµ(ξ,T )−2β)n(1− ε)λ1(K), because K ⊂ A`
≥ 2(hµ(ξ,T )−3β)nµ(P̃Ln ∈ K | Q = h).

(3.19)

Moreover, using (??), we get

#I ≤ 2(hµ(ξ,T )+2β)n1µ(ξ[0,n1[ ∈ I, ξ[0,n[ ∈ Bn)

≤ 2(hµ(ξ,T )+2β)n1µ(ξ[0,n1[ ∈ I | ξ[0,n[ ∈ Bn)

= 2(hµ(ξ,T )+2β)n1µ(ξ[0,n1[ ∈ I | Q = h), because ξ ⊥⊥ H
≤ 2(hµ(ξ,T )+2β)n1µ(P̃Ln ∈ K | Q = h),

by definition of K. Together with (??), it yields

#I ≤ 2((1−γ)(hµ(ξ,T )+2β)−(hµ(ξ,T )−3β))n#
⋃
b̄∈I

Jb̄

≤ 2(5β−γhµ(ξ,T ))n#
⋃
b̄∈I

Jb̄ ≤ #
⋃
b̄∈I

Jb̄,

for β small enough with respect to γ. Therefore there exists an injective map
ψh : B̄n1(h)→ Bn for which (??) holds. As we noted that #Bn1 ≤ #Bn, ψh can
then be extended to an injective map defined on Bn1 (still taking values in Bn).
We recall that, with ψh built, we set ϕh(b) := ψh(bn1).

As we announced at the start of our reasoning, we define ξ̃0 on the levels of
Ch so that the ξ̃-name of each sub-column Cb

h is ϕh(b) = ψh(bn1). Since this
construction can be done with every h ∈ Ēn (with the map ψh depending on h),
we have completed the construction of ξ̃0. We now need to check that ξ̃ satisfies
the conditions (i), (ii) and (iii) of our lemma.
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Step 5: Proving that ξ̃ satsifies (i), (ii) and (iii)

We start by estimating the law of ξ̃0. Since µ(Tn) ≥ 1− 3β, we have∑
b∈B

|µ(ξ̃0 = b)− µ(ξ0 = b)| ≤
∑
b∈B

|µ({ξ̃0 = b} ∩ Tn)− µ(ξ0 = b)µ(Tn)|+ 6β

≤
∑
b∈B

∑
h∈En,b∈Bn

|µ({ξ̃0 = b} ∩ Cb
h)− µ(ξ0 = b)µ(Cb

h)|+ 6β.

We recall that fn(b, b′) is the frequency at which the element b′ appears in the
sequence b (see (??)). Moreover, one can see that, since ϕh(b) is the ξ̃-name of
Cb

h and all the levels of Cb
h have the same measure, we have

µ({ξ̃0 = b} ∩ Cb
h) = µ(Cb

h) · fn(ϕh(b), b).

Therefore, because ϕh takes values in Bn, (??) yields:∑
b∈B

|µ(ξ̃0 = b)− µ(ξ0 = b)| ≤
∑
b∈B

∑
h∈En,b∈Bn

µ(Cb
h)|fn(ϕh(b), b)− µ(ξ0 = b)|+ 6β

≤ βµ(Tn) + 6β ≤ 7β.

This means that d̄1(L(ξ̃0),L(ξ0)) ≤ 7β ≤ α, for β small enough.
We now turn our attention to the entropy ofH∨ ξ̃. The ξ̃-name of a column Cb

h

is ψh(bn1), and since ψh is invective, we can deduce bn1 from the ξ̃-name of Cb
h.

This means that, on the levels of the truncated tower Tn1 := {T jF}0≤j≤n1−1, ξ0 is
(H∨ ξ̃)[−n1,n[-measurable. Indeed, if x is in Tn1 and the sequence (H∨ ξ̃)[−n1,n[(x)

is known, the sequence ξ̃[−n1,0[(x) must contain a “∗”, which indicates the moment
the past orbit of x passes trough G before entering Tn. So the position of “∗” in
ξ̃[−n1,0[(x) tells us the index of the level of Tn1 the point x is on, which we call
j0. In other words, we mean that T−j0x ∈ F . Then, (H ∨ ξ̃)[−j0,n−j0[ gives the
(H∨ ξ̃)-name of the column x is on, from which we deduce the truncated ξ-name
of length n1 of the column. Finally, the j0-th letter of that name gives us ξ0(x).

Therefore, if we combine the previous paragraph with the fact that µ(Tn1) ≥
(1 − γ)µ(Tn), there exists a (H ∨ ξ̃)[−n1,n[-measurable random variable χ0 such
that µ(χ0 6= ξ0) ≤ β+γ ≤ 2γ (if β ≤ γ). So, by applying Lemma ??, for γ small
enough with respect to α, we conclude that

hµ(H ∨ ξ, T ) ≤ hµ(H ∨ χ, T ) + α ≤ hµ(H ∨ ξ̃, T ) + α.

121



BecauseH ∨ ξ generates A , we also have the converse inequality

hµ(H ∨ ξ̃, T ) ≤ hµ(H ∨ ξ, T ),

so we have proved that ξ̃ satisfies condition (ii) of our lemma.
We are now left with proving (iii). If we consider that ξ̃[−n,n[(x) is known, we

deduce that, if the symbol “∗” appears in ξ̃[−n,0[, then x is in Tn and the position
of “∗” tells us the index j0 of the level of Tn the point x is on. Then, using the
notation introduced in our construction above, we can look at the random variable
P̃j0(h0, ξ̃[−j0,n1−j0[). It is ξ̃[−n,n[-measurable and we are going to show that it
satisfies

µ(P̃j0(h0, ξ̃[−j0,n1−j0[) 6= P0) ≤ 5ε. (3.20)

We start by looking at a column Ch for some h ∈ Ēn. We then split it into
sub-columns Cb

h. If bn1 ∈ B̄n1(h), we are going to use (??). First, we need to
remember that if x is in Cb

h, then ξ̃[−j0,n−j0[(x) gives the ξ̃-name of the column
Cb

h. But, by construction, that name is ψh(bn1), and, because we are looking at
the case where h ∈ Ēn and bn1 ∈ B̄n1(h), (??) holds. So we have

d`(P̃Ln(h0, ξ̃[−j0,n1−j0[), P̃Ln(h, bn1)) ≤ ε.

We recall that Ln = [n0, n1 − n0[ and ` is its length. By definition of d`, we
know that the number of levels j0 ∈ Ln on which we have P̃j0(h0, ξ̃[−j0,n1−j0[) =

P̃j0(h, bn1) is greater than (1 − ε)`. Moreover, by construction, for j0 ∈ Ln, on
the j0-th level of Cb

h, we have P̃0 = P̃j0(h, bn1). Finally, since ` = n1 − 2n0, we
have

µ(P̃j0(h0, ξ̃[−j0,n1−j0[) 6= P̃0 |Cb
h) ≤ n− (1− ε)(n1 − 2n0)

n

≤ n− (1− ε)(1− γ)n+ 2n0

n

≤ ε+ γ +
2n0

n
≤ 2ε,

for γ ≤ ε/2 and n large enough so that 2n0/n ≤ ε/2. Moreover, the fact that
h ∈ Ēn implies that µ(ξ[0,n1[ ∈ B̄n1(h) | Q = h) ≥ 1− ε, and, combining it with
(??), we can see that

µ

 ⋃
bn1 /∈B̄n1 (h)

Cb
h

∣∣∣∣∣∣ Ch

 ≤ ε.
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Therefore
µ(P̃j0(h0, ξ̃[−j0,n1−j0[) 6= P̃0 |Ch) ≤ 3ε.

Next

µ(P̃j0(h0, ξ̃[−j0,n1−j0[) 6= P̃0) ≤ 3ε+ µ

 ⋃
h/∈Ēn

Ch

+ µ(T cn )

≤ 3ε+ ε+ µ(T cn ) using (??) and (??)
≤ 4ε+ 3β.

Finally, P̃0 was chosen so that µ(P̃0 6= P0) ≤ β2, so for β small enough, we have
proven (??), and therefore, up to replacing ε by ε/5, we have shown that

P0 �ε σ(ξ̃).

3.2.2 Application of the technical lemma

We are now left with proving Proposition ?? using Lemma ??. This is done us-
ing some abstract results from Thouvenot [?, Proposition 2’, Proposition 3]. We
start by rewriting those results with our notation. We give a slight simplification,
adapted to our setup.

First, [?, Proposition 2’] tells us that a process close enough to an i.i.d. process
independent from H in law and entropy can be turned into an i.i.d. process
independent from H .

Proposition 3.2.8. Let X := (X,A , µ, T ) be an ergodic system of finite entropy.
Let H be a finite valued process defined on X and ρ be a probability measure on
a finite alphabet B. For every ε > 0, there exist α > 0 such that if a random
variable ξ̃0 : X → B satisfies

(i) d̄1(ρ,L(ξ̃0)) ≤ α,

(ii) and 0 ≤ hµ(H, T ) +H(ρ)− hµ(H ∨ ξ̃, T ) ≤ α,

then there exists a random variable ξ′0 of law ρ such that the process ξ′ := (ξ′0 ◦
T n)n∈Z is i.i.d., independent fromH and we have

µ(ξ̃0 6= ξ′0) ≤ ε.
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Next, [?, Proposition 3] tells us that on a system that is relatively Bernoulli
over a factor H , any i.i.d. process independent from H with the right entropy
can be turned into an independent complement of H :

Proposition 3.2.9. Let X := (X,A , µ, T ) be an ergodic system,H a finite valued
process and ξ a finite valued i.i.d. process independent from H such that A =
σ(H) ∨ σ(ξ) mod µ. For any ε > 0 and any i.i.d. process ζ independent from H
such that hµ(ξ, T ) = hµ(ζ, T ), there exists ζ̃0 such that L(H ∨ ζ̃) = L(H ∨ ζ),
A = σ(H) ∨ σ(ζ̃) mod µ and

µ(ζ̃0 6= ζ0) ≤ ε.

We are now fully equipped to end the proof of Proposition ??:

Proof of Proposition ??. Let X := (X,A , µ, T ) be a Bernoulli shift of finite
entropy and P0 : X → A a finite valued random variable such that A =
σ({P0 ◦ T n}n∈Z). As we consider a factor σ-algebra H of X, it has finite en-
tropy, therefore there exists a finite valued random variable H0 : X → H such
that the processH := (H0◦T n)n∈Z generates H . Lastly, we take an i.i.d. process
ξ independent from H such that A = H ∨ σ(ξ) mod µ. Let ε > 0.

Now, Lemma ?? tells us that there is δ > 0 for which, if hµ(H , T ) ≤ δ, then
for any α > 0, there is a random variable ξ̃0 such that

(i) d̄1(L(ξ0),L(ξ̃0)) ≤ α,

(ii) 0 ≤ hµ(H ∨ ξ, T )− hµ(H ∨ ξ̃, T ) ≤ α,

(iii) and P0 �ε/4 σ(ξ̃).

Denote P̃0 a ξ̃-measurable random variable such that µ(P̃0 6= P0) ≤ ε/4. We can
find an integer N ≥ 1 for which P̃0 �ε/4 ξ̃[−N,N ] and set ε1 := ε/(4(2N + 1)).
If α is chosen small enough, then Proposition ?? tells us that there is a random
variable ξ′0 such that the process (ξ′0 ◦ T n)n∈Z is i.i.d., independent from H and
we have µ(ξ′0 6= ξ̃0) ≤ ε1. Finally, Proposition ?? tells us that we can then find a
random variable ξ′′0 for which the process (ξ′′0 ◦ T n)n∈Z is still i.i.d., independent
from H, but we also have that A = H ∨ σ(ξ′′) mod µ and µ(ξ′0 6= ξ̃0) ≤ ε1. So
we have µ(ξ′′0 6= ξ̃0) ≤ 2ε1.

Combining that with the fact that P̃0 �ε/4 ξ̃[−N,N ], we get that P̃0 �3ε/4

ξ′′[−N,N ], so
P0 �ε ξ′′[−N,N ].

Setting B := σ(ξ′′), we get the Bernoulli factor desired to prove our proposition.
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3.2.3 Proof of Theorem ??

In the previous section, we managed to conclude the proof of Proposition ??. We
now see how Theorem ?? follows from that proposition:

Proof of Theorem ??. Let X := (X,A , µ, T ) be a Bernoulli system and F :=
(Fn)n≤0 be a weak Pinsker filtration. Since F is a weak Pinsker filtration, if
(Fn)≤−1 is of product type, so is F . Therefore, up to replacing X by the factor
generated by F−1, we can assume that X has finite entropy. Thanks to Theorem
??, this means that we can set a finite alphabet A and a random variable P0 :
X → A such that the corresponding process P := (P0 ◦ T i)i∈Z generates A , i.e.
A = σ(P) mod µ. Let (εk)k≥1 be a decreasing sequence of positive numbers
such that limk→∞ εk = 0.

We need to build a strictly increasing sequence (nk)k≤0 such that (Fnk)k≤0

is of product type. We start by setting n0 = 0. Since limn→−∞ hµ(Fn, T ) = 0,
we can choose n−1 ≤ 0 large enough (in absolute value), so that hµ(Fn−1 , T ) is
small enough for Proposition ?? to enable us to build a Bernoulli factor σ-algebra
Bn−1 that is an independent complement of Fn−1 such that P0 �ε1 Bn−1 .

Now take k ≤ −1 and assume that we have built (Bn−1 , ...,Bnk) such that
they are mutually independent Bernoulli factors such that for k ≤ j ≤ −1, Bnj is
independent from Fnj , Fnj+1

= Fnj ∨Bnj and we have

P0 �ε|k|
∨

k≤j≤−1

Bnj . (3.21)

By construction of the Bnj , we know that P is measurable with respect to Fnk ∨∨
k≤j≤−1 Bnj . Moreover, using again Theorem ??, there is a random variable

P(k)
0 such that the process P(k) := (P(k)

0 ◦ T i)i∈Z generates Fnk . So there exists
an integer N ≥ 1 such that

P0 �ε|k|+1/2 P
(k)
[−N,N ] ∨

∨
k≤j≤−1

Bnj . (3.22)

Then set ε̃ := ε|k|+1/(2(2N + 1)) > 0. As we did above, we choose nk−1 ≤ nk
large enough in absolute value so that hµ(Fnk−1

, T ) is small enough for us to ap-
ply Proposition ?? to find a Bernoulli factor Bnk−1

⊂ Fnk such that Bnk−1
⊥⊥Fnk−1

,
Fnk = Fnk−1

∨Bnk−1
and

P(k)
0 �ε̃ Bnk−1

. (3.23)
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Putting (??) and (??) together, we get

P0 �ε|k|+1

∨
k−1≤j≤−1

Bnj .

Iterating this for every k ≤ −1 ends our construction of (nk)k≤0 and (Bnk)k≤−1.
Therefore (??) holds for every k ≤ −1. It follows then that P0 is measurable with
respect to ∨

j≤−1

Bnj .

Since the Bnj are factor σ-algebras, the full processP is also
∨
j≤−1 Bnj -measurable.

Finally, P generates A , so∨
j≤−1

Bnj = A = F0 mod µ.

Let k ≤ −1, and set E1 :=
∨
j≤k−1 Bnj and E2 :=

∨
k≤j≤−1 Bnj . By con-

struction, we have

E1 ⊂ Fnk , Fnk ⊥⊥ E2, and F0 = E1 ∨ E2.

We use this to see that if f is Fnk-measurable, we have

f = E[f |F0] = E[f |E1 ∨ E2] = E[f |E1],

which proves that
Fnk = E1 =

∨
j≤k−1

Bnj mod µ.

3.3 Examples of weak Pinsker filtrations generated
by a cellular automaton

Up to this point, we have discussed the existence and abstract properties of weak
Pinsker filtrations. Now we want to give explicit examples to get a more concrete
idea of what those objects can look like. We take inspiration from [?] and use cel-
lular automata to generate our filtrations. We describe in the following paragraphs
how this is done.
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Let A be a finite alphabet. A cellular automaton (or, more precisely, a deter-
ministic cellular automaton) τ : AZ → AZ maps AZ onto itself as follows: take
F ⊂ Z finite, which we call a neighborhood, and a local map τ0 : AF → A. Then
define

τ : (an)n∈Z 7→ (τ0((an+k)k∈F ))n∈Z.

Here, we will only consider examples in which F = {0, 1}. Therefore, our au-
tomata will be determined by a local map of the form τ0 : A{0,1} → A. One can
note that, by construction, cellular automata commute with the shift transforma-
tion

S : (an)n∈Z 7→ (an+1)n∈Z.

So we can consider a dynamical system of the form Y := (AZ,B, ν, S) where
ν is a S-invariant measure, and note that the σ-algebra σ(τ) generated by τ is a
factor σ-algebra. We can do better and iterate τ to generate a filtration:

for n ≤ 0, Fn := σ(τ |n|).

In that case, each Fn is a factor σ-algebra of Y, and therefore F := (Fn)n≤0

is a dynamical filtration. So, we see that cellular automata give a natural way to
construct dynamical filtrations.

In fact, the theory of dynamical filtrations we presented in Section ?? was
initiated in [?] in the setting of filtrations generated by cellular automata. How-
ever, the automata studied there preserve the product measure, and therefore the
entropy of the associated factor σ-algebras Fn will be the same for every n ≤ 0.
This prevents the filtration from being weak Pinsker.

Here, we will consider a different automaton: take A a finite alphabet and
assume that one element of A is labeled «0». Then define the following local map

τ0 : A2 −→ A

(α1, α2) 7→
{
α1 if α1 = α2

0 otherwise.
(3.24)

The associated automaton will eliminate isolated elements, replacing them with 0,
and a maximal string of the form α · · ·αα is replaced with α · · ·α0. For example,
if A = {0, 1}, this gives:

0 0 0 00 1 0 1 1 1

0 1 10 0 0 0 0 0

Therefore, as we iterate the automaton, the proportion of «0» increases as all
other elements are gradually replaced by «0». Heuristically, this indicates that the
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entropy of the factor σ-algebras σ(τ |n|) will go to zero as n goes to infinity. But to
state this rigorously, one need to specify the system Y := (AZ,B, ν, S) on which
we define F . More accurately, it is the alphabet A and the measure ν that need to
be specified. However, the entropy hν(Fn) goes to 0 regardless of the choice of
A and ν:

Proposition 3.3.1. Let Y := (AZ,B, ν, S), where ν is a S-invariant measure and
let ξ be the coordinate process on Y. For every n ≥ 1, we have

hν(τ
nξ, S) ≤ log(#An2)

n
.

Proof. Let Bn ⊂ An be the set of values taken by (τnξ)[0,n[. We know that

Hν((τ
nξ)[0,n[) ≤ log(#Bn).

Because of the structure of τ , in τnξ, for α 6= 0, any run of «α» is placed in
between two runs of «0» of length at least n + 1. Therefore, (τnξ)[0,n[ is either a
sequence of «0» or composed of one run of «α» (with α 6= 0) in between runs of
«0». So

#Bn ≤ 1 + (#A− 1)n2 ≤ #An2.

In conclusion

hν(τ
nξ, S) ≤ 1

n
Hν((τ

nξ)[0,n[) ≤
log(#An2)

n
.

In Section ??, we deal with the case where Y is a Bernoulli shift, and in Sec-
tion ??, we deal with the case where Y is Ornstein’s example of a non-Bernoulli
K-system from [?]. In both cases, by Proposition ??, the entropy of the filtration
generated by the cellular automaton goes to zero. Then we look at each example
separately to show the more involved result: each Fn+1 is relatively Bernoulli
over Fn. Therefore, we get two examples of weak Pinsker filtrations.

It is interesting to note that those two filtrations are very similar in their con-
struction, but the filtration on Ornstein’s K-system cannot be of product type (oth-
erwise, the system would be Bernoulli), while we conjecture that the filtration on
the Bernoulli shift is of product type. At least, we know from Theorem ?? that the
latter has a sub-sequence that is of product type. It shows that there can be subtle
differences in the asymptotic structure of weak Pinsker filtrations.
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3.3.1 A cellular automaton on a Bernoulli shift

Here, we consider a Bernoulli shift Y := (AZ,B, ν, S) where ν is a product
measure. To avoid unnecessarily complicated notations, we will also assume that
A = {0, 1} and ν := (1

2
(δ0 + δ1))⊗Z. Therefore, the local function (??) becomes:

τ0 : {0, 1}2 −→ {0, 1}

α 7→
{

1 si α = (1, 1)
0 otherwise.

And we study the corresponding automaton:

τ : {0, 1}Z −→ {0, 1}Z
(an)n∈Z 7→ (τ0(an, an+1))n∈Z

The automaton replaces an isolated «1» with a «0» and reduces sequences of «1»
by replacing the final one by a «0».

Theorem 3.3.2. On the system Y := ({0, 1}Z,B, ν, S), the filtration given by
F := (σ(τ |n|))n≤0 is a weak Pinsker filtration. That is, for every n ≤ −1, Fn+1

is relatively Bernoulli over Fn and we have

hν(Fn) −→
n→−∞

0. (3.25)

The convergence of the entropy follows from Proposition ??. However, when
Y is a Bernoulli shift, we can compute a better bound, as stated in Proposition ??.
First, we give a simple technical lemma on Shannon entropy:

Lemma 3.3.3. Let B be a finite set and ε ∈]0, e−1[. If ρ is a random variable
taking values in B such that there exists b0 ∈ B satisfying ν(ρ = b0) ≥ 1 − ε,
then

Hν(ρ) ≤ ε(1 + log(#B) + log(ε−1)).

Proof. Let ε ∈]0, e−1[. Using the concavity of ϕ : x 7→ −x log(x), we see that
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ϕ(x) ≤ 1− x and so we get

Hν(ρ) = ϕ(ν(ρ = b0)) +
∑
b 6=b0

ϕ(ν(ρ = b))

≤ ε+ (#B − 1)ϕ

(
1

#B − 1

∑
b6=b0

ν(ρ = b)

)

= ε+ (#B − 1)ϕ

(
µ(ρ 6= b0)

#B − 1

)
= ε− ν(ρ 6= b0) · log

(
ν(ρ 6= b0)

#B − 1

)
≤ ε+ ν(ρ 6= b0) log(#B) + ϕ(ν(ρ 6= b0))

≤ ε(1 + log(#B) + log(ε−1)),

because ϕ is increasing on ]0, e−1[.

Proposition 3.3.4. Let ξ denote the coordinate process on Y. For every n ≥ 0,
we have

hν(τ
nξ, S) ≤ 3 log(2)2−n/2.

Proof. Let n ≥ 0. One can see that τnξ is 1 at i if and only if ξ is 1 over the entire
segment [i, i+ n], as shown below:

1 1

1

We set kn := dn/2e, and we remark that

ν({∃i ∈ [0, kn], (τnξ)i = 1}) ≤ ν({ξ[kn,n] = (1, ..., 1)}) ≤ 1/2n−kn+1 ≤ 1/2n/2.

Then, combining this with Lemma ?? we get

Hν((τ
nξ)[0,kn]) ≤ 2−n/2(1 + log(2kn+1) + log(2n/2)) ≤ 2−n/23(kn + 1) log(2),
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and we can conclude for the KS-entropy:

hν(τ
nξ, S) ≤ 1

kn + 1
Hν((τ

nξ)[0,kn]) ≤ 3 log(2)2−n/2.

In addition, we give the following simple lemma on conditional independence:

Lemma 3.3.5. Let (X,A , µ) be a probability space and Z a sub-σ-algebra. Let
A, B, U and V be random variables such that

(A,U) ⊥⊥Z (B, V ).

Then we have

L(A,B |U, V,Z ) = L(A |U,Z )⊗ L(B |V,Z )

= L(A |U, V,Z )⊗ L(B |U, V,Z )

Proof. It follows from the fact that if A′, B′, U ′ and V ′ are respectively A, B, U
and V -measurable random variables:

E[A′ ·B′ · U ′ · V ′ |Z ] = E[A′ · U ′ |Z ] · E[B′ · V ′ |Z ]

= E[E[A′ |U,Z ] · U ′ |Z ] · E[E[B′ |V,Z ] · V ′ |Z ]

= E[E[A′ |U,Z ] · U ′ · E[B′ |V,Z ] · V ′ |Z ].

Proposition 3.3.6. Let ξ be the coordinate process on Y. For every n ≥ 1, ξ is
relatively very weak Bernoulli over τnξ.

Proof. Set η := τnξ. Relative very weak Bernoullicity was defined in Definition
??. We recall some notation: take λ ∈ P({0, 1}Z × {0, 1}Z) to be the law of
(η, ξ), and for I, J ⊂ Z and a, b ∈ {0, 1}Z, λ`(· | aI , bJ) is the conditional law of
ξ[0,`[ given that ηI = aI and ξJ = bJ .

Let ε > 0. We need to show that there exists ` ≥ 1 such that for every m ≥ 1
and for k ≥ 1 large enough, we have∫

d̄`
(
λ`(· | a[−k,k], b[−m,0]), λ`(· | a[−k,k])

)
dλ(a, b) ≤ ε. (3.26)

131



Let m ≥ 1. We start by noting that there must be some «1» that appears in η:
indeed, the law of large numbers tells us that there exists `0 ≥ 1 such that

µ({∃i ∈ [0, `0[ ; ηi = 1}︸ ︷︷ ︸
:=A

) ≥ 1− ε. (3.27)

We then set ` := d1
ε
e`0. Next, we take k ≥ `0 so that η[−k,k] determines entirely

A.
We fix i ∈ [0, `0[. First, we note that, as we can see on the following image

1 1

1

11

if ηi = 1, then (ξ]−∞,i[, η]−∞,i[) is ξ]−∞,i[-measurable and (ξ]i,∞[, η]i,∞[) is ξ]i+n,∞[-
measurable. So, since the variables {ξj}j∈Z are independent, given {ηi = 1}
the variables (ξ]−∞,i[, η]−∞,i[) and (ξ]i,∞[, η]i,∞[) are independent. Finally, using
Lemma ??, for a ∈ AZ such that ai = 1, we get:

L(ξ]−∞,i[, ξ]i,∞[ | η[−k,k] = a[−k,k]) = L(ξ]−∞,i[ | η[−k,i[ = a[−k,i[, ηi = 1)

⊗ L(ξ]i,∞[ | η]i,k] = a]i,k], ηi = 1)

= L(ξ]−∞,i[ | η[−k,k] = a[−k,k])⊗ L(ξ]i,∞[ | η]i,k] = a[−k,k]).

Therefore, if η[−k,k] is chosen so that there exists i ∈ [0, `0[ such that ηi = 1, we
see that ξ[−m,0[ and ξ[`0,`[ are independent given η[−k,k].

We are now ready to prove (??). For any b ∈ {0, 1}Z and any a ∈ {0, 1}Z
such that there exists i ∈ [0, `0[ such that ai = 1, the fact that ξ[−m,0] and ξ[`0,`[

are relatively independent given {η[−k,k] = a[−k,k]} implies that the measures
λ`(· | a[−k,k], b[−m,0]) and λ`(· | a[−k,k]) have the same marginal on the coordinates
of [`0, `[. So the relative product of those measures over ξ[`0,`[ is a coupling under
which the copies of ξ[`0,`[ coincide. It follows that

d̄`
(
λ`(· | a[−k,k], b[−m,0]), λ`(· | a[−k,k])

)
≤ `0/` ≤ ε. (3.28)
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By combining (??) and (??), we can conclude that∫
d̄`
(
λ`(· | a[−k,k], b[−m,0]), λ`(· | a[−k,k])

)
dλ(a, b) ≤ 2ε.

Proof of Theorem ??. First of all, (??) follows directly from Proposition ??. Next,
from Proposition ??, it follows that F0 is relatively very weak Bernoulli over Fn,
so Fn+1 is relatively very weak Bernoulli over Fn (by part (iii) of Lemma ??), so
Fn+1 is relatively Bernoulli over Fn (by part (i) of Lemma ??).

3.3.2 A cellular automaton on Ornstein’s K-process

Here, we consider the non-Bernoulli K-system introduced by Ornstein in [?]. A
more detailed presentation of this system is given in [?, Part III], but we give a
sketch of the construction for completeness. It is a process defined on the alphabet
{0, e, f, s}. We set h(r), s(r) and f(r) to be integers depending on r ∈ N used
in the construction of the process. For r ≥ 1, an r-block is a random sequence of
length h(r) on the alphabet {0, e, f, s}, whose law we define inductively.

To get a 1-block, take k1 ∈ J1, f(1) − 1K chosen uniformly at random, and
consider a sequence that starts with a string of k1 «f», followed by a string of
h(0) «0», and ends with a string of f(1)− k1 «e»:

This construction implies that h(1) = h(0) + f(1).
To get an r-block, take kr ∈ J1, f(r) − 1K chosen uniformly at random, and

2r i.i.d. random variables (ξ
(r−1)
i )i∈J1,2rK such that each ξ(r−1)

i is an (r− 1)-block.
The r-block is then built as follows:

So an r-block starts with a string of kr «f», and ends with a string of f(r)−kr
«e». In between, we put all the (r − 1)-blocks separated by strings of «s» so that
each ξ(r−1)

i is placed in between two strings of «s» of respective lengths is(r) and
(i+ 1)s(r). In particular, h(r) is entirely determined by h(r − 1), f(r) and s(r).

Ornstein’s K-system is then built by constructing an increasing sequence of
towers (Tr)r≥1 such that X :=

⋃
r≥1 Tr. A tower Tr is given by its base Fr for
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which the sets {T iFr}i∈[0,h(r)[ are disjoint and

Tr :=

h(r)−1⊔
i=0

T iFr.

Through a cutting and stacking method, Ornstein builds in [?] the towers (Tr)r≥1

along with a process ξ so that the law of ξ[0,h(r)[ given Fr is the law of an r-block.
In other words, this means that the columns of the form

Ca :=

h(r)−1⊔
i=0

T i(Fr ∩ {ξ[0,h(r)[ = a}), for a ∈ {0, e, f, s}h(r),

partition Tr according to the law of an r-block. Denote X := (X,A , µ, T ) the
resulting dynamical system. A proper choice of h(r), s(r) and f(r) assures that
this construction gives a finite measure. Then ξ is a factor map onto the system

Y := ({0, e, f, s}Z,B, ν, S),

where ν is the law of ξ.
Since ξ is a process on the alphabet {0, e, f, s}, the local function (??) be-

comes:
τ0 : {0, e, f, s}2 −→ {0, e, f, s}

(α1, α2) 7→
{
α1 si α1 = α2

0 otherwise.

From now on, τ denotes the corresponding cellular automaton. Similarly to what
we did in Section ??, we prove

Theorem 3.3.7. On the system Y := ({0, e, f, s}Z,B, ν, S), the filtration given
by F := (σ(τ |n|))n≤0 is a weak Pinsker filtration. That is, for every n ≤ −1,
Fn+1 is relatively Bernoulli over Fn and we have

hν(Fn) −→
n→−∞

0. (3.29)

The overall structure of the proof will resemble Section ??, but the details
are adapted to the specific structure of Ornstein’s process. First, the convergence
to 0 of the entropy follows from Proposition ??. We could also adapt the proof
of Proposition ?? to get that convergence, but it does not give a better rate of
convergence than Proposition ??, so we do not give any details.
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Proposition 3.3.8. If ξ is the process defined above, then for every n ≥ 1, ξ is
relatively very weak Bernoulli over τnξ.

Proof. We set η := τnξ. Let ε > 0. Once again, we need to show that there exists
` ≥ 1 such that for every m ≥ 1 and for k ≥ 1 large enough, we have∫

d̄`
(
λ`(· | a[−k,k], b[−m,0]), λ`(· | a[−k,k])

)
dλ(a, b) ≤ ε,

where λ is the law of (η, ξ) and, for I, J ⊂ Z, λ`(· | aI , bJ) is the conditional law
of ξ[0,`[ given that ηI equals aI and that ξJ equals bJ .

Let m ≥ 1. We choose r so that s(r + 1) ≥ n + 1. By construction of ξ,
we know that for any r-block in ξ, there exists i ∈ [1, 2r+1] such that the said
r-block will come after a string of i · s(r + 1) «s» and be followed by a string of
(i+ 1) · s(r+ 1) «s». Therefore, by knowing the positions of all the strings of «s»
longer that s(r + 1), we know the position of every r-block.

However, since we chose to have s(r + 1) ≥ n + 1, we can say that, for
k ∈ Z, we have ξ[k,k+s(r+1)[ = (s, ..., s) if and only if η[k,k+s(r+1)−n[ = (s, ..., s).
This means that the positions of the r-blocks contained on a segment [k1, k2] are
η[k1−N,k2+N ]-measurable, for N large enough (for example N = (2r+1 + 1)s(r +
1)).

By choosing r large enough, we can also assume that µ(Tr) ≥ 1− ε/2. Using
Birkhoff’s ergodic theorem, for ` large enough, the set

A :=

{
x ∈ X;

1

`

`−1∑
j=0

1Tr(T
j(x)) > 1− ε

}
,

satisfies µ(A) > 1− ε.
In other words, for x ∈ A, the number of elements in the sequence ξ[0,`[(x) that

are part of an r-block is greater than (1 − ε)`. However, among the intervals on
which those r-blocks are supported, two of them may not be included in [0, `[, and
can intersect Z\[0, `[. But, if h(r)/` ≤ ε/2, there are at most ε` elements in those
two intervals. To sum up, we get that the number of elements in the sequence
ξ[0,`[(x) that are part of an r-block, and for which the position of that r-block is
contained on the segment [0, `[, is greater than (1− 2ε)`. Then, we choose k ≥ 1
so that the positions of the r-blocks contained in [−m, `[ are η[−k,k]-measurable
(in particular, A is η[−k,k]-measurable). So we have the following configuration
for ξ[−m,`[:
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where the Bi are the positions of the r-blocks supported on [0, `[, and we have
shown that #

⊔p
i=1 Bi ≥ (1− 2ε)`.

Denote by I` := {Bi}1≤i≤p the random variable that gives the positions of the
r-blocks on the segment [0, `[. By construction of ξ, we know that, given I`, for
any r-block B, the variables ξB and ξBc are independent. Moreover, we know that
any r-block is between two strings of at least n+ 1 «s». Therefore, we see that if
I` is fixed, for any r-block B, ηB is ξB-measurable and ηBc is ξBc-measurable.

Let us give details on the proof of that last claim: we write Bc as the union of
B− andB+, the infinite intervals that come before and afterB respectively. Given
the structure of our automaton, it is always true that ηB+ is ξB+-measurable. At
the boundary between B− and B, we have the following configuration:

Indeed, in the construction of the blocks, we see that ξ must put an «f» in the first
box of B. Therefore, we must have «0» in the red boxes. So, the values that η
takes on the n + 1 boxes preceding B are determined. For the rest of the boxes
of B−, it comes from the structure of τ that the values of η are determined by
ξB− since we are at a distance ≥ n + 1 from B. So we have shown that ηB− is
(ξB−)-measurable. A similar reasoning at the boundary betweenB andB+ shows
that ηB is ξB-measurable. And since it is always true that ηB+ is ξB+-measurable,
we have proven that ηB is ξB-measurable and ηBc is ξBc-measurable.

But, we also know from the structure of ξ that, given I`, ξB and ξBc are in-
dependent. The previous paragraph enables us to use Lemma ?? to extend that
to: given I` ∨ η[−k,k], ξB and ξBc are independent. Finally, since I` is η[−k,k]-
measurable, this yields that ξB and ξBc are relatively independent given η[−k,k].

This independence tells us that, for every sequences a and b, λ`(· | a[−k,k], b[−m,0])
and λ`(· | a[−k,k]) have the same marginals on the coordinates of the r-blocks B
contained in [0, `[. Moreover, if a is chosen so that {η[−k,k] = a[−k,k]} is a subset
of A, we know that the positions of the r-blocks cover at least (1− 2ε)` elements
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in [0, `[. Then, by considering the relative product of λ`(· | a[−k,k], b[−m,0]) and
λ`(· | a[−k,k]) over {ξBi}1≤i≤p, we get:

d̄`
(
λ`(· | a[−k,k], b[−m,0]), λ`(· | a[−k,k])

)
≤ 2ε.

Finally, since µ(A) ≥ 1− ε, this yields∫
d̄`
(
λ`(· | a[−k,k], b[−m,0]), λ`(· | a[−k,k])

)
dν(a, b) ≤ 3ε.

Remark 3.3.9. We see that the proofs of Theorem ?? and Theorem ?? are very
similar. In both cases, we have a process ξ, whose conditional law given τnξ
is made of random blocks separated by deterministic blocks, and the random
blocks are filled independently from each other. The main difference that pre-
vents Ornstein’s K-process from being Bernoulli is that the position of r-blocks is
determined by the long sequences of «s», and this creates correlations over long
distances. But once we condition by τnξ, those sequences of «s» are entirely de-
termined. Therefore we are left with filing independently all the r-blocks, and the
past has no longer a significant influence on the future.

In that sense, when we look at the relative structure of Ornstein’s K-process
over τn, the non-Bernoulli aspects disappear. However, when we look at the
asymptotic properties of the weak Pinsker filtration obtained by applying {τn}n≥1,
whether we start with a Bernoulli process or with a non-Bernoulli K-process, we
get different results. Therefore, getting a better understanding of the classification
of the various properties of weak Pinsker filtrations could help to develop a new
classification of non-Bernoulli K-systems.
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Abstract

In this thesis, we explore the possible structures of measure preserving dynamical
systems of the form X := (X,A , µ, T ) and their factor σ-algebras B ⊂ A .

The first two chapters investigate various ways in which a factor σ-algebra B
can sit in a dynamical system X := (X,A , µ, T ), i.e. we study some possible
structures of the extension A → B. In the first chapter, we consider the concepts
of super-innovations and standardness of extensions, which are inspired from the
theory of filtrations. An important focus of our work is the introduction of the
notion of confined extensions, which first interested us because they have no super-
innovation. We give several examples and study additional properties of confined
extensions, including several lifting results. Then, we show our main result: the
existence of non-standard extensions. Finally, this result finds an application to the
study of dynamical filtrations, i.e. filtrations of the form (Fn)n≤0 such that each
Fn is a factor σ-algebra. We show that there exist non-standard I-cosy dynamical
filtrations.

The second chapter furthers the study of confined extensions by finding a new
kind of such extensions, in the setup of Poisson suspensions: we take an infinite
σ-finite measure-preserving dynamical system (X,µ, T ) and a compact extension
(X × G, µ ⊗ mG, Tϕ), then we consider the corresponding Poisson extension
((X ×G)∗, (µ⊗mG)∗, (Tϕ)∗) −→ (X∗, µ∗, T∗). We give conditions under which
that extension is confined and build an example which fits those conditions.

Lastly, the third chapter focuses on a family of dynamical filtrations: weak
Pinsker filtrations. The existence of those filtrations on any ergodic system comes
from a recent result by Austin [?], and they present themselves as a potential tool
to describe positive entropy systems. We explore the links between the asymptotic
structure of weak Pinsker filtrations and the properties of the underlying dynam-
ical system. Naturally, we also ask whether, on a given system, the structure of
weak Pinsker filtrations is unique up to isomorphism. We give a partial answer,
in the case where the underlying system is Bernoulli. We conclude our work by
giving two explicit examples of weak Pinsker filtrations.

Keywords: Confined extensions, compact extensions, joinings, Poisson suspen-
sions, entropy, Bernoulli systems, K-systems, dynamical filtrations, weak Pinsker
filtrations



Résumé

Dans cette thèse, nous explorons les structures possibles des systèmes dynamiques
de la forme X := (X,A , µ, T ) et leurs tribus facteur B ⊂ A .

Les deux premiers chapitres étudient les différentes façons dont une tribu fac-
teur B peut s’inclure dans un système dynamique X := (X,A , µ, T ), c’est-à-
dire que nous étudions certaines structures possibles de l’extension A → B.
Dans le premier chapitre, nous considérons les concepts de super-innovations et
de standardité des extensions, inspirés de la théorie des filtrations. Un point im-
portant est l’introduction de la notion d’extensions confinées, qui nous intéressent
parce qu’elles n’ont pas de super-innovation. Nous donnons plusieurs exemples
et étudions des propriétés supplémentaires de ces extensions, y compris des résul-
tats de relèvement. Ensuite, nous montrons notre résultat principal : l’existence
d’extensions non-standard. Enfin, ce résultat trouve une application dans l’étude
des filtrations dynamiques, qui sont les filtrations de la forme (Fn)n≤0 telles que
chaque Fn est une tribu facteur. Nous montrons qu’il existe des filtrations dy-
namiques I-confortables non standard.

Le deuxième chapitre approfondit l’étude des extensions confinées en trouvant
un nouveau type de telles extensions, dans le cadre des suspensions de Poisson :
nous prenons un système dynamique (X,µ, T ) en mesure σ-finie infinie et une
extension compacte (X × G, µ ⊗mG, Tϕ), puis nous considérons l’extension de
Poisson correspondante ((X × G)∗, (µ ⊗ mG)∗, (Tϕ)∗) −→ (X∗, µ∗, T∗). Nous
donnons des conditions sous lesquelles cette extension est confinée et construisons
un exemple qui correspond à ces conditions.

Enfin, le troisième chapitre se concentre sur une famille de filtrations dy-
namiques : les filtrations de Pinsker faible. L’existence de ces filtrations sur tout
système ergodique provient d’un résultat récent d’Austin [?], et elles se présen-
tent comme un outil potentiel pour décrire les systèmes à entropie positive. Nous
explorons les liens entre la structure asymptotique des filtrations de Pinsker faible
et les propriétés du système dynamique sous-jacent. Naturellement, nous deman-
dons aussi si, sur un système donné, la structure des filtrations de Pinsker faible est
unique à isomorphisme près. Nous donnons une réponse partielle, dans le cas où
le système sous-jacent est un schéma de Bernoulli. Nous concluons notre travail
en donnant deux exemples explicites de filtrations de Pinsker faible.

Mots clés: Extensions confinées, extensions compactes, couplages, suspensions
de Poisson, entropie, schémas de Bernoulli, K-systèmes, filtrations dynamiques,
filtrations de Pinsker faible


